These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26792325)

  • 1. Non-crossbridge stiffness in active muscle fibres.
    Colombini B; Nocella M; Bagni MA
    J Exp Biol; 2016 Jan; 219(Pt 2):153-60. PubMed ID: 26792325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of force enhancement during stretching of skeletal muscle fibres investigated by high time-resolved stiffness measurements.
    Nocella M; Bagni MA; Cecchi G; Colombini B
    J Muscle Res Cell Motil; 2013 Feb; 34(1):71-81. PubMed ID: 23296372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossbridge properties during force enhancement by slow stretching in single intact frog muscle fibres.
    Colombini B; Nocella M; Benelli G; Cecchi G; Bagni MA
    J Physiol; 2007 Dec; 585(Pt 2):607-15. PubMed ID: 17932153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle.
    Nocella M; Colombini B; Bagni MA; Bruton J; Cecchi G
    J Muscle Res Cell Motil; 2012 Mar; 32(6):403-9. PubMed ID: 22072314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossbridge properties investigated by fast ramp stretching of activated frog muscle fibres.
    Bagni MA; Cecchi G; Colombini B
    J Physiol; 2005 May; 565(Pt 1):261-8. PubMed ID: 15774512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of solution tonicity on crossbridge properties and myosin lever arm disposition in intact frog muscle fibres.
    Colombini B; Bagni MA; Cecchi G; Griffiths PJ
    J Physiol; 2007 Jan; 578(Pt 1):337-46. PubMed ID: 17023505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness.
    Powers JD; Bianco P; Pertici I; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2020 Jan; 598(2):331-345. PubMed ID: 31786814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.
    Brunello E; Bianco P; Piazzesi G; Linari M; Reconditi M; Panine P; Narayanan T; Helsby WI; Irving M; Lombardi V
    J Physiol; 2006 Dec; 577(Pt 3):971-84. PubMed ID: 16990403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming.
    Spierts IL; Akster HA; Granzier HL
    J Comp Physiol B; 1997 Nov; 167(8):543-51. PubMed ID: 9404015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres.
    Seow CY; Shroff SG; Ford LE
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):149-64. PubMed ID: 9175000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-crossbridge forces in activated striated muscles: a titin dependent mechanism of regulation?
    Rassier DE; Leite FS; Nocella M; Cornachione AS; Colombini B; Bagni MA
    J Muscle Res Cell Motil; 2015 Feb; 36(1):37-45. PubMed ID: 25421125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells.
    Rassier DE
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C134-C145. PubMed ID: 28539306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy storage during stretch of active single fibres from frog skeletal muscle.
    Linari M; Woledge RC; Curtin NA
    J Physiol; 2003 Apr; 548(Pt 2):461-74. PubMed ID: 12598584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcomere tension-stiffness relation during the tetanus rise in single frog muscle fibres.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):469-76. PubMed ID: 10555065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force enhancement after stretch in mammalian muscle fiber: no evidence of cross-bridge involvement.
    Nocella M; Cecchi G; Bagni MA; Colombini B
    Am J Physiol Cell Physiol; 2014 Dec; 307(12):C1123-9. PubMed ID: 25298425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of intact single fibres from wild-type and MLC/mIgf-1 transgenic mouse muscle.
    Colombini B; Benelli G; Nocella M; MusarĂ² A; Cecchi G; Bagni MA
    J Muscle Res Cell Motil; 2009; 30(5-6):199-207. PubMed ID: 19731048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres.
    Bagni MA; Cecchi G; Colomo F; Garzella P
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):273-8. PubMed ID: 7738825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.