BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26792332)

  • 1. Molecular networks in skeletal muscle plasticity.
    Hoppeler H
    J Exp Biol; 2016 Jan; 219(Pt 2):205-13. PubMed ID: 26792332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of muscle plasticity with exercise.
    Hoppeler H; Baum O; Lurman G; Mueller M
    Compr Physiol; 2011 Jul; 1(3):1383-412. PubMed ID: 23733647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of skeletal muscle mitochondria: structure and function.
    Hoppeler H; Fluck M
    Med Sci Sports Exerc; 2003 Jan; 35(1):95-104. PubMed ID: 12544642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle.
    Apró W; Wang L; Pontén M; Blomstrand E; Sahlin K
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(1):E22-32. PubMed ID: 23632629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation.
    Atherton PJ; Babraj J; Smith K; Singh J; Rennie MJ; Wackerhage H
    FASEB J; 2005 May; 19(7):786-8. PubMed ID: 15716393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endurance exercise mimetics in skeletal muscle.
    Matsakas A; Narkar VA
    Curr Sports Med Rep; 2010; 9(4):227-32. PubMed ID: 20622541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis of skeletal muscle plasticity--from gene to form and function.
    Flück M; Hoppeler H
    Rev Physiol Biochem Pharmacol; 2003; 146():159-216. PubMed ID: 12605307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals.
    Vissing K; McGee S; Farup J; Kjølhede T; Vendelbo M; Jessen N
    Scand J Med Sci Sports; 2013 Jun; 23(3):355-66. PubMed ID: 23802289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle.
    Benziane B; Burton TJ; Scanlan B; Galuska D; Canny BJ; Chibalin AV; Zierath JR; Stepto NK
    Am J Physiol Endocrinol Metab; 2008 Dec; 295(6):E1427-38. PubMed ID: 18827172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans.
    Coffey VG; Zhong Z; Shield A; Canny BJ; Chibalin AV; Zierath JR; Hawley JA
    FASEB J; 2006 Jan; 20(1):190-2. PubMed ID: 16267123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli.
    Flück M
    J Exp Biol; 2006 Jun; 209(Pt 12):2239-48. PubMed ID: 16731801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise.
    Winder WW; Taylor EB; Thomson DM
    Med Sci Sports Exerc; 2006 Nov; 38(11):1945-9. PubMed ID: 17095928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene networks in skeletal muscle following endurance exercise are coexpressed in blood neutrophils and linked with blood inflammation markers.
    Broadbent J; Sampson D; Sabapathy S; Haseler LJ; Wagner KH; Bulmer AC; Peake JM; Neubauer O
    J Appl Physiol (1985); 2017 Apr; 122(4):752-766. PubMed ID: 28104750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent strength and endurance training: from molecules to man.
    Nader GA
    Med Sci Sports Exerc; 2006 Nov; 38(11):1965-70. PubMed ID: 17095931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle.
    Frøsig C; Jørgensen SB; Hardie DG; Richter EA; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E411-7. PubMed ID: 14613924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapidly elevated levels of PGC-1α-b protein in human skeletal muscle after exercise: exploring regulatory factors in a randomized controlled trial.
    Gidlund EK; Ydfors M; Appel S; Rundqvist H; Sundberg CJ; Norrbom J
    J Appl Physiol (1985); 2015 Aug; 119(4):374-84. PubMed ID: 26089547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms.
    de Lange P; Moreno M; Silvestri E; Lombardi A; Goglia F; Lanni A
    FASEB J; 2007 Nov; 21(13):3431-41. PubMed ID: 17595346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling.
    Neubauer O; Sabapathy S; Ashton KJ; Desbrow B; Peake JM; Lazarus R; Wessner B; Cameron-Smith D; Wagner KH; Haseler LJ; Bulmer AC
    J Appl Physiol (1985); 2014 Feb; 116(3):274-87. PubMed ID: 24311745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.