BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26792341)

  • 1. Locomotion as an emergent property of muscle contractile dynamics.
    Biewener AA
    J Exp Biol; 2016 Jan; 219(Pt 2):285-94. PubMed ID: 26792341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.
    Lee SS; de Boef Miara M; Arnold AS; Biewener AA; Wakeling JM
    J Exp Biol; 2013 Jan; 216(Pt 2):198-207. PubMed ID: 22972893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle force-length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors.
    Daley MA; Biewener AA
    J Exp Biol; 2003 Sep; 206(Pt 17):2941-58. PubMed ID: 12878663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The integrated function of muscles and tendons during locomotion.
    Roberts TJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):1087-99. PubMed ID: 12485693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle architecture in relation to function.
    Gans C; Gaunt AS
    J Biomech; 1991; 24 Suppl 1():53-65. PubMed ID: 1791182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control.
    Spector SA; Gardiner PF; Zernicke RF; Roy RR; Edgerton VR
    J Neurophysiol; 1980 Nov; 44(5):951-60. PubMed ID: 7441324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-length properties and functional demands of cat gastrocnemius, soleus and plantaris muscles.
    Herzog W; Leonard TR; Renaud JM; Wallace J; Chaki G; Bornemisza S
    J Biomech; 1992 Nov; 25(11):1329-35. PubMed ID: 1400534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic aspects of skeletal muscle contraction: implications of fiber types.
    Rall JA
    Exerc Sport Sci Rev; 1985; 13():33-74. PubMed ID: 3159582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.
    Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL
    J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle function in avian flight: achieving power and control.
    Biewener AA
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1496-506. PubMed ID: 21502121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional morphology of force transmission in skeletal muscle. A brief review.
    Trotter JA
    Acta Anat (Basel); 1993; 146(4):205-22. PubMed ID: 8317197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of mallard (Anas platyrynchos) gastrocnemius function during swimming versus terrestrial locomotion.
    Biewener AA; Corning WR
    J Exp Biol; 2001 May; 204(Pt 10):1745-56. PubMed ID: 11316495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile behavior of the forelimb digital flexors during steady-state locomotion in horses (Equus caballus): an initial test of muscle architectural hypotheses about in vivo function.
    Butcher MT; Hermanson JW; Ducharme NG; Mitchell LM; Soderholm LV; Bertram JE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jan; 152(1):100-14. PubMed ID: 18835360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force.
    Biewener AA; Wakeling JM; Lee SS; Arnold AS
    Integr Comp Biol; 2014 Dec; 54(6):1072-83. PubMed ID: 24928073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.
    Sawicki GS; Robertson BD; Azizi E; Roberts TJ
    J Exp Biol; 2015 Oct; 218(Pt 19):3150-9. PubMed ID: 26232413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The musculotendinous system of an anguilliform swimmer: Muscles, myosepta, dermis, and their interconnections in Anguilla rostrata.
    Danos N; Fisch N; Gemballa S
    J Morphol; 2008 Jan; 269(1):29-44. PubMed ID: 17886889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber architecture of the intrinsic muscles of the shoulder and arm in semiterrestrial and arboreal guenons.
    Anapol F; Gray JP
    Am J Phys Anthropol; 2003 Sep; 122(1):51-65. PubMed ID: 12923904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How musculotendon architecture and joint geometry affect the capacity of muscles to move and exert force on objects: a review with application to arm and forearm tendon transfer design.
    Zajac FE
    J Hand Surg Am; 1992 Sep; 17(5):799-804. PubMed ID: 1401783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration within and between muscles during terrestrial locomotion: effects of incline and speed.
    Higham TE; Biewener AA
    J Exp Biol; 2008 Jul; 211(Pt 14):2303-16. PubMed ID: 18587125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.