These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 26792525)
1. Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Blower TR; Williamson BH; Kerns RJ; Berger JM Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1706-13. PubMed ID: 26792525 [TBL] [Abstract][Full Text] [Related]
2. Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase. Aldred KJ; Blower TR; Kerns RJ; Berger JM; Osheroff N Proc Natl Acad Sci U S A; 2016 Feb; 113(7):E839-46. PubMed ID: 26792518 [TBL] [Abstract][Full Text] [Related]
3. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. Mustaev A; Malik M; Zhao X; Kurepina N; Luan G; Oppegard LM; Hiasa H; Marks KR; Kerns RJ; Berger JM; Drlica K J Biol Chem; 2014 May; 289(18):12300-12. PubMed ID: 24497635 [TBL] [Abstract][Full Text] [Related]
4. Docking studies on novel analogues of 8 methoxy fluoroquinolones against GyrA mutants of Mycobacterium tuberculosis. Anand RS; Somasundaram S; Doble M; Paramasivan CN BMC Struct Biol; 2011 Dec; 11():47. PubMed ID: 22152119 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis. Zhang YJ; Li XJ; Mi KX Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933 [TBL] [Abstract][Full Text] [Related]
6. Bypassing fluoroquinolone resistance with quinazolinediones: studies of drug-gyrase-DNA complexes having implications for drug design. Drlica K; Mustaev A; Towle TR; Luan G; Kerns RJ; Berger JM ACS Chem Biol; 2014 Dec; 9(12):2895-904. PubMed ID: 25310082 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of binding of fluoroquinolones to the quinolone resistance-determining region of DNA gyrase: towards an understanding of the molecular basis of quinolone resistance. Madurga S; Sánchez-Céspedes J; Belda I; Vila J; Giralt E Chembiochem; 2008 Sep; 9(13):2081-6. PubMed ID: 18677735 [TBL] [Abstract][Full Text] [Related]
8. The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone. Lentz SRC; Chheda PR; Oppegard LM; Towle TR; Kerns RJ; Hiasa H Biochimie; 2019 May; 160():24-27. PubMed ID: 30763638 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of Action of Mycobacterium tuberculosis Gyrase Inhibitors: A Novel Class of Gyrase Poisons. Gibson EG; Blower TR; Cacho M; Bax B; Berger JM; Osheroff N ACS Infect Dis; 2018 Aug; 4(8):1211-1222. PubMed ID: 29746087 [TBL] [Abstract][Full Text] [Related]
11. WQ-3810: A new fluoroquinolone with a high potential against fluoroquinolone-resistant Mycobacterium tuberculosis. Ouchi Y; Mukai T; Koide K; Yamaguchi T; Park JH; Kim H; Yokoyama K; Tamaru A; Gordon SV; Nakajima C; Suzuki Y Tuberculosis (Edinb); 2020 Jan; 120():101891. PubMed ID: 31778929 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Matrat S; Veziris N; Mayer C; Jarlier V; Truffot-Pernot C; Camuset J; Bouvet E; Cambau E; Aubry A Antimicrob Agents Chemother; 2006 Dec; 50(12):4170-3. PubMed ID: 17015625 [TBL] [Abstract][Full Text] [Related]
13. Novel N-linked aminopiperidine-based gyrase inhibitors with improved hERG and in vivo efficacy against Mycobacterium tuberculosis. Hameed P S; Patil V; Solapure S; Sharma U; Madhavapeddi P; Raichurkar A; Chinnapattu M; Manjrekar P; Shanbhag G; Puttur J; Shinde V; Menasinakai S; Rudrapatana S; Achar V; Awasthy D; Nandishaiah R; Humnabadkar V; Ghosh A; Narayan C; Ramya VK; Kaur P; Sharma S; Werngren J; Hoffner S; Panduga V; Kumar CN; Reddy J; Kumar K N M; Ganguly S; Bharath S; Bheemarao U; Mukherjee K; Arora U; Gaonkar S; Coulson M; Waterson D; Sambandamurthy VK; de Sousa SM J Med Chem; 2014 Jun; 57(11):4889-905. PubMed ID: 24809953 [TBL] [Abstract][Full Text] [Related]
14. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. Collins JA; Osheroff N ACS Infect Dis; 2024 Apr; 10(4):1097-1115. PubMed ID: 38564341 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of fluoroquinolones induced resistance in DNA gyrase of Mycobacterium tuberculosis. Pandey B; Grover S; Tyagi C; Goyal S; Jamal S; Singh A; Kaur J; Grover A J Biomol Struct Dyn; 2018 Feb; 36(2):362-375. PubMed ID: 28071975 [TBL] [Abstract][Full Text] [Related]
16. Targeting DNA Gyrase to Combat Mycobacterium tuberculosis: An Update. Das S; Garg T; Srinivas N; Dasgupta A; Chopra S Curr Top Med Chem; 2019; 19(8):579-593. PubMed ID: 30834837 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Chan PF; Srikannathasan V; Huang J; Cui H; Fosberry AP; Gu M; Hann MM; Hibbs M; Homes P; Ingraham K; Pizzollo J; Shen C; Shillings AJ; Spitzfaden CE; Tanner R; Theobald AJ; Stavenger RA; Bax BD; Gwynn MN Nat Commun; 2015 Dec; 6():10048. PubMed ID: 26640131 [TBL] [Abstract][Full Text] [Related]
19. Gatifloxacin derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase. Sriram D; Aubry A; Yogeeswari P; Fisher LM Bioorg Med Chem Lett; 2006 Jun; 16(11):2982-5. PubMed ID: 16554151 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis, and evaluation of novel N-1 fluoroquinolone derivatives: Probing for binding contact with the active site tyrosine of gyrase. Towle TR; Kulkarni CA; Oppegard LM; Williams BP; Picha TA; Hiasa H; Kerns RJ Bioorg Med Chem Lett; 2018 Jun; 28(10):1903-1910. PubMed ID: 29661533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]