BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 26792670)

  • 1. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.
    Capela NA; Lemaire ED; Baddour N
    PLoS One; 2015; 10(4):e0124414. PubMed ID: 25885272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a Smartphone-based Human Activity Recognition System in a Daily Living Environment.
    Lemaire ED; Tundo MD; Baddour N
    J Vis Exp; 2015 Dec; (106):e53004. PubMed ID: 26710275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity Recognition for Persons With Stroke Using Mobile Phone Technology: Toward Improved Performance in a Home Setting.
    O'Brien MK; Shawen N; Mummidisetty CK; Kaur S; Bo X; Poellabauer C; Kording K; Jayaraman A
    J Med Internet Res; 2017 May; 19(5):e184. PubMed ID: 28546137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel algorithm for a smartphone-based 6-minute walk test application: algorithm, application development, and evaluation.
    Capela NA; Lemaire ED; Baddour N
    J Neuroeng Rehabil; 2015 Feb; 12():19. PubMed ID: 25889112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position.
    Della Mea V; Quattrin O; Parpinel M
    Inform Health Soc Care; 2017 Dec; 42(4):321-334. PubMed ID: 28005434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of a smartphone-based balance assessment system for subjects with chronic stroke.
    Hou YR; Chiu YL; Chiang SL; Chen HY; Sung WH
    Comput Methods Programs Biomed; 2018 Jul; 161():191-195. PubMed ID: 29852961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of Human Activity Recognition Using a Single Sensor for Stroke Survivors and Able-Bodied People.
    Meng L; Zhang A; Chen C; Wang X; Jiang X; Tao L; Fan J; Wu X; Dai C; Zhang Y; Vanrumste B; Tamura T; Chen W
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Smartphone-Based Balance Assessment System for Subjects with Stroke.
    Hou YR; Chiu YL; Chiang SL; Chen HY; Sung WH
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of activity classification in younger and older cohorts using a smartphone.
    Del Rosario MB; Wang K; Wang J; Liu Y; Brodie M; Delbaere K; Lovell NH; Lord SR; Redmond SJ
    Physiol Meas; 2014 Nov; 35(11):2269-86. PubMed ID: 25340659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The untapped potential of smartphone sensors for stroke rehabilitation and after-care.
    Zhang MW; Chew PY; Yeo LL; Ho RC
    Technol Health Care; 2016; 24(1):139-43. PubMed ID: 26484884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.