BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 26792866)

  • 1. Formation and function of the manchette and flagellum during spermatogenesis.
    Lehti MS; Sironen A
    Reproduction; 2016 Apr; 151(4):R43-54. PubMed ID: 26792866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sak57, an acidic keratin initially present in the spermatid manchette before becoming a component of paraaxonemal structures of the developing tail.
    Tres LL; Kierszenbaum AL
    Mol Reprod Dev; 1996 Jul; 44(3):395-407. PubMed ID: 8858609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail.
    Kierszenbaum AL
    Mol Reprod Dev; 2002 Sep; 63(1):1-4. PubMed ID: 12211054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertional mutation that causes acrosomal hypo-development: its relationship to sperm head shaping.
    Russell LD; Ying L; Overbeek PA
    Anat Rec; 1994 Apr; 238(4):437-53. PubMed ID: 8192241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation.
    Lehti MS; Zhang FP; Kotaja N; Sironen A
    Development; 2017 Jul; 144(14):2683-2693. PubMed ID: 28619825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A MEIG1/PACRG complex in the manchette is essential for building the sperm flagella.
    Li W; Tang W; Teves ME; Zhang Z; Zhang L; Li H; Archer KJ; Peterson DL; Williams DC; Strauss JF; Zhang Z
    Development; 2015 Mar; 142(5):921-30. PubMed ID: 25715396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport.
    Wu AT; Sutovsky P; Xu W; van der Spoel AC; Platt FM; Oko R
    Dev Biol; 2007 Dec; 312(2):471-83. PubMed ID: 17988661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEIG1 determines the manchette localization of IFT20 and IFT88, two intraflagellar transport components in male germ cells.
    Yap YT; Shi L; Zhang D; Huang Q; Siddika F; Wang Z; Li W; Zhang Z
    Dev Biol; 2022 May; 485():50-60. PubMed ID: 35257720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The WD40-protein CFAP52/WDR16 is a centrosome/basal body protein and localizes to the manchette and the flagellum in male germ cells.
    Tapia Contreras C; Hoyer-Fender S
    Sci Rep; 2020 Aug; 10(1):14240. PubMed ID: 32859975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KIF3A is essential for sperm tail formation and manchette function.
    Lehti MS; Kotaja N; Sironen A
    Mol Cell Endocrinol; 2013 Sep; 377(1-2):44-55. PubMed ID: 23831641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spermatogenesis revisited. III. The course of spermatogenesis in a male-sterile pink-eyed mutant type in the mouse.
    Bryan JH
    Cell Tissue Res; 1977 May; 180(2):173-86. PubMed ID: 872192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bypassing natural sperm selection during fertilization: the azh mutant offspring experience and the alternative of spermiogenesis in vitro.
    Kierszenbaum AL; Tres LL
    Mol Cell Endocrinol; 2002 Feb; 187(1-2):133-8. PubMed ID: 11988320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haploid male germ cells-the Grand Central Station of protein transport.
    Pleuger C; Lehti MS; Dunleavy JE; Fietz D; O'Bryan MK
    Hum Reprod Update; 2020 Jun; 26(4):474-500. PubMed ID: 32318721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ran, a GTP-binding protein involved in nucleocytoplasmic transport and microtubule nucleation, relocates from the manchette to the centrosome region during rat spermiogenesis.
    Kierszenbaum AL; Gil M; Rivkin E; Tres LL
    Mol Reprod Dev; 2002 Sep; 63(1):131-40. PubMed ID: 12211070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFAP43-mediated intra-manchette transport is required for sperm head shaping and flagella formation.
    Yu Y; Wang J; Zhou L; Li H; Zheng B; Yang S
    Zygote; 2021 Feb; 29(1):75-81. PubMed ID: 33046149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head.
    Kierszenbaum AL; Tres LL
    Arch Histol Cytol; 2004 Nov; 67(4):271-84. PubMed ID: 15700535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera).
    Riparbelli MG; Callaini G; Mercati D; Hertel H; Dallai R
    Cell Motil Cytoskeleton; 2009 May; 66(5):248-59. PubMed ID: 19306353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear morphogenesis and the role of the manchette during spermiogenesis in the ostrich (Struthio camelus).
    Soley JT
    J Anat; 1997 May; 190 ( Pt 4)(Pt 4):563-76. PubMed ID: 9183679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manchette-acrosome disorders during spermiogenesis and low efficiency of seminiferous tubules in hypercholesterolemic rabbit model.
    Simón L; Funes AK; Yapur MA; Cabrillana ME; Monclus MA; Boarelli PV; Vincenti AE; Saez Lancellotti TE; Fornés MW
    PLoS One; 2017; 12(2):e0172994. PubMed ID: 28241054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotrimeric Kinesin II is required for flagellar assembly and elongation of nuclear morphology during spermiogenesis in Schmidtea mediterranea.
    Christman DA; Curry HN; Rouhana L
    Dev Biol; 2021 Sep; 477():191-204. PubMed ID: 34090925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.