These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

775 related articles for article (PubMed ID: 26793123)

  • 1. Mitochondrial Quality Control and Muscle Mass Maintenance.
    Romanello V; Sandri M
    Front Physiol; 2015; 6():422. PubMed ID: 26793123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging.
    Leduc-Gaudet JP; Hussain SNA; Barreiro E; Gouspillou G
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise and mitochondrial mechanisms in patients with sarcopenia.
    Alizadeh Pahlavani H; Laher I; Knechtle B; Zouhal H
    Front Physiol; 2022; 13():1040381. PubMed ID: 36561214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse.
    Memme JM; Slavin M; Moradi N; Hood DA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass.
    Romanello V; Sandri M
    Cell Mol Life Sci; 2021 Feb; 78(4):1305-1328. PubMed ID: 33078210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy.
    Calvani R; Joseph AM; Adhihetty PJ; Miccheli A; Bossola M; Leeuwenburgh C; Bernabei R; Marzetti E
    Biol Chem; 2013 Mar; 394(3):393-414. PubMed ID: 23154422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox environment and mitochondrial dysfunction in age-related skeletal muscle atrophy.
    Shally A; McDonagh B
    Biogerontology; 2020 Aug; 21(4):461-473. PubMed ID: 32323076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the Fission Machinery Mitigates OPA1 Impairment in Adult Skeletal Muscles.
    Romanello V; Scalabrin M; Albiero M; Blaauw B; Scorrano L; Sandri M
    Cells; 2019 Jun; 8(6):. PubMed ID: 31208084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting mitochondrial quality control for treating sarcopenia: lessons from physical exercise.
    Picca A; Calvani R; Leeuwenburgh C; Coelho-Junior HJ; Bernabei R; Landi F; Marzetti E
    Expert Opin Ther Targets; 2019 Feb; 23(2):153-160. PubMed ID: 30580640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle Disuse Atrophy Caused by Discord of Intracellular Signaling.
    Ji LL; Yeo D; Kang C
    Antioxid Redox Signal; 2020 Apr; ():. PubMed ID: 32212824
    [No Abstract]   [Full Text] [Related]  

  • 12. Mitochondrial dysregulation and muscle disuse atrophy.
    Ji LL; Yeo D
    F1000Res; 2019; 8():. PubMed ID: 31559011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner.
    Huang DD; Fan SD; Chen XY; Yan XL; Zhang XZ; Ma BW; Yu DY; Xiao WY; Zhuang CL; Yu Z
    Exp Gerontol; 2019 May; 119():61-73. PubMed ID: 30690066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the mechanisms regulating muscle mitochondrial biogenesis.
    Hood DA; Tryon LD; Carter HN; Kim Y; Chen CC
    Biochem J; 2016 Aug; 473(15):2295-314. PubMed ID: 27470593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial breakdown in skeletal muscle and the emerging role of the lysosomes.
    Triolo M; Hood DA
    Arch Biochem Biophys; 2019 Jan; 661():66-73. PubMed ID: 30439362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training.
    Arribat Y; Broskey NT; Greggio C; Boutant M; Conde Alonso S; Kulkarni SS; Lagarrigue S; Carnero EA; Besson C; Cantó C; Amati F
    Acta Physiol (Oxf); 2019 Feb; 225(2):e13179. PubMed ID: 30144291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle.
    Heo JW; No MH; Park DH; Kang JH; Seo DY; Han J; Neufer PD; Kwak HB
    Korean J Physiol Pharmacol; 2017 Nov; 21(6):567-577. PubMed ID: 29200899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner.
    Frank M; Duvezin-Caubet S; Koob S; Occhipinti A; Jagasia R; Petcherski A; Ruonala MO; Priault M; Salin B; Reichert AS
    Biochim Biophys Acta; 2012 Dec; 1823(12):2297-310. PubMed ID: 22917578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects.
    Hyatt H; Deminice R; Yoshihara T; Powers SK
    Arch Biochem Biophys; 2019 Feb; 662():49-60. PubMed ID: 30452895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells.
    Parousis A; Carter HN; Tran C; Erlich AT; Mesbah Moosavi ZS; Pauly M; Hood DA
    Autophagy; 2018; 14(11):1886-1897. PubMed ID: 30078345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.