These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26793148)

  • 1. Preserved Suppression of Salient Irrelevant Stimuli During Visual Search in Age-Associated Memory Impairment.
    Lorenzo-López L; Maseda A; Buján A; de Labra C; Amenedo E; Millán-Calenti JC
    Front Psychol; 2015; 6():2033. PubMed ID: 26793148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature processing during visual search in normal aging: electrophysiological evidence.
    Lorenzo-López L; Amenedo E; Cadaveira F
    Neurobiol Aging; 2008 Jul; 29(7):1101-10. PubMed ID: 17346855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies.
    Chen X; Xu B; Chen Y; Zeng X; Zhang Y; Fu S
    Psychophysiology; 2023 Aug; 60(8):e14290. PubMed ID: 36946491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search.
    Barras C; Kerzel D
    Psychophysiology; 2017 Dec; 54(12):1826-1838. PubMed ID: 28752665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capture by Context Elements, Not Attentional Suppression of Distractors, Explains the P
    Kerzel D; Burra N
    J Cogn Neurosci; 2020 Jun; 32(6):1170-1183. PubMed ID: 31967520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial filtering restricts the attentional window during both singleton and feature-based visual search.
    Berggren N; Eimer M
    Atten Percept Psychophys; 2020 Jul; 82(5):2360-2378. PubMed ID: 31993978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology.
    Jannati A; Gaspar JM; McDonald JJ
    J Exp Psychol Hum Percept Perform; 2013 Dec; 39(6):1713-30. PubMed ID: 23527999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of reward-driven attentional capture in visual search.
    Qi S; Zeng Q; Ding C; Li H
    Brain Res; 2013 Sep; 1532():32-43. PubMed ID: 23916733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-irrelevant filler items alter the dynamics of electrical brain activity during visual search.
    Drisdelle BL; Corriveau I; Fortier-Gauthier U; Jolicoeur P
    Q J Exp Psychol (Hove); 2023 Jun; 76(6):1245-1263. PubMed ID: 35899896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference.
    Barras C; Kerzel D
    Biol Psychol; 2016 Dec; 121(Pt A):74-83. PubMed ID: 27756581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid top-down control over template-guided attention shifts to multiple objects.
    Grubert A; Fahrenfort J; Olivers CNL; Eimer M
    Neuroimage; 2017 Feb; 146():843-858. PubMed ID: 27554532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous attention modulates attentional and motor interference from distractors: evidence from behavioral and electrophysiological results.
    Martín-Arévalo E; Lupiáñez J; Botta F; Chica AB
    Front Psychol; 2015; 6():132. PubMed ID: 25750629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological and behavioral evidence for the attention capture and suppression failure of irrelevant singleton in test anxiety.
    Hu C; Song J; Hong Y; Zhou R
    J Psychiatr Res; 2023 May; 161():386-392. PubMed ID: 37015159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of attentional target selection in a colour/colour conjunction task.
    Berggren N; Eimer M
    Atten Percept Psychophys; 2016 Nov; 78(8):2383-2396. PubMed ID: 27357843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
    Lega C; Ferrante O; Marini F; Santandrea E; Cattaneo L; Chelazzi L
    J Neurosci; 2019 Sep; 39(38):7591-7603. PubMed ID: 31387915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of task set-modulating attentional capture depends on the distractor cost in visual search: evidence from N2pc.
    Zhao D; Liang S; Jin Z; Li L
    Neuroreport; 2014 Jul; 25(10):737-42. PubMed ID: 24840929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the temporal dynamics and efficacy of task-relevant and task-irrelevant memory-driven attention.
    Jung K; Han SW; Min Y
    Cogn Process; 2022 May; 23(2):299-308. PubMed ID: 35001208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological evidence of the capture of visual attention.
    Hickey C; McDonald JJ; Theeuwes J
    J Cogn Neurosci; 2006 Apr; 18(4):604-13. PubMed ID: 16768363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are the same attentional mechanisms used to detect visual search targets defined by color, orientation, and motion?
    Girelli M; Luck SJ
    J Cogn Neurosci; 1997 Mar; 9(2):238-53. PubMed ID: 23962014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.