BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26793795)

  • 1. Picric acid capped silver nanoparticles as a probe for colorimetric sensing of creatinine in human blood and cerebrospinal fluid samples.
    Parmar AK; Valand NN; Solanki KB; Menon SK
    Analyst; 2016 Feb; 141(4):1488-98. PubMed ID: 26793795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine.
    Alula MT; Karamchand L; Hendricks NR; Blackburn JM
    Anal Chim Acta; 2018 May; 1007():40-49. PubMed ID: 29405987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles.
    Sutariya PG; Pandya A; Lodha A; Menon SK
    Talanta; 2016 Jan; 147():590-7. PubMed ID: 26592650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective determination of homocysteine levels in human plasma using a silver nanoparticle-based colorimetric assay.
    Leesutthiphonchai W; Dungchai W; Siangproh W; Ngamrojnavanich N; Chailapakul O
    Talanta; 2011 Aug; 85(2):870-6. PubMed ID: 21726712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non enzymatic glucose biosensor based on an ultrasensitive calix[4]arene functionalized boronic acid gold nanoprobe for sensing in human blood serum.
    Pandya A; Sutariya PG; Menon SK
    Analyst; 2013 Apr; 138(8):2483-90. PubMed ID: 23476922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dithiocarbamate-capped silver nanoparticles as a resonance light scattering probe for simultaneous detection of lead(II) ions and cysteine.
    Cao H; Wei M; Chen Z; Huang Y
    Analyst; 2013 Apr; 138(8):2420-6. PubMed ID: 23463028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles.
    Mohammadi S; Khayatian G
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():27-34. PubMed ID: 28531847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric detection of Bi (III) in water and drug samples using pyridine-2,6-dicarboxylic acid modified silver nanoparticles.
    Mohammadi S; Khayatian G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():405-11. PubMed ID: 25919329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.
    Cheng KM; Hung YW; Chen CC; Liu CC; Young JJ
    Carbohydr Polym; 2014 Sep; 110():195-202. PubMed ID: 24906746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols.
    Chen Z; Zhang X; Cao H; Huang Y
    Analyst; 2013 Apr; 138(8):2343-9. PubMed ID: 23457709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles.
    Gao X; Lu Y; He S; Li X; Chen W
    Anal Chim Acta; 2015 Jun; 879():118-25. PubMed ID: 26002486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles.
    Liu Y; Liu Y; Li Z; Liu J; Xu L; Liu X
    Analyst; 2015 Aug; 140(15):5335-43. PubMed ID: 26079979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric recognition of 6-benzylaminopurine in environmental samples by using thioglycolic acid functionalized silver nanoparticles.
    Zheng M; He J; Wang Y; Wang C; Ma S; Sun X
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():27-33. PubMed ID: 29126005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric determination of melamine in milk using unmodified silver nanoparticles.
    Kumar N; Kumar H; Mann B; Seth R
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():89-97. PubMed ID: 26654965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters.
    Zhang JR; Yue YY; Luo HQ; Li NB
    Analyst; 2016 Feb; 141(3):1091-7. PubMed ID: 26661456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid.
    Rostami S; Mehdinia A; Jabbari A
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 180():204-210. PubMed ID: 28292703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione and L-cysteine modified silver nanoplates-based colorimetric assay for a simple, fast, sensitive and selective determination of nickel.
    Kiatkumjorn T; Rattanarat P; Siangproh W; Chailapakul O; Praphairaksit N
    Talanta; 2014 Oct; 128():215-20. PubMed ID: 25059151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive and selective determination of hydrogen sulfide by resonance light scattering technique based on silver nanoparticles.
    Kuang Y; Chen S; Long Y
    Anal Bioanal Chem; 2017 Jun; 409(16):4001-4008. PubMed ID: 28417178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric determination of cysteamine based on the aggregation of polyvinylpyrrolidone-stabilized silver nanoparticles.
    Shanmugaraj K; Sasikumar T; Campos CH; Ilanchelian M; Mangalaraja RV; Torres CC
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118281. PubMed ID: 32335419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.