These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2679382)

  • 21. Comparison of Organic Acid Salts for Clostridium botulinum Control in an Uncured Turkey Product.
    Mller AJ; Call JE; Whiting RC
    J Food Prot; 1993 Nov; 56(11):958-962. PubMed ID: 31113090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.
    Golden MC; Wanless BJ; David JRD; Lineback DS; Talley RJ; Kottapalli B; Glass KA
    J Food Prot; 2017 Aug; 80(8):1252-1258. PubMed ID: 28686492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production.
    Ma L; Zhang G; Sobel J; Doyle MP
    J Food Prot; 2007 Dec; 70(12):2860-3. PubMed ID: 18095444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature.
    Graham AF; Mason DR; Peck MW
    Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbiological quality and the inability of proteolytic Clostridium botulinum to produce toxin in film-packaged fresh-cut cabbage and lettuce.
    Hao YY; Brackett RE; Beuchat LR; Doyle MP
    J Food Prot; 1998 Sep; 61(9):1148-53. PubMed ID: 9766066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners.
    Bowen VG; Cerveny JG; Deibel RH
    Appl Microbiol; 1974 Mar; 27(3):605-6. PubMed ID: 4596392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibotulinal efficacy of sulfur dioxide in meat.
    Tompkin RB; Christiansen LN; Shaparis AB
    Appl Environ Microbiol; 1980 Jun; 39(6):1096-9. PubMed ID: 6996613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Cultured Celery Juice, Temperature, and Product Composition on the Inhibition of Proteolytic Clostridium botulinum Toxin Production.
    Golden MC; Wanless BJ; David JRD; Kottapalli B; Lineback DS; Talley RJ; Glass KA
    J Food Prot; 2017 Aug; 80(8):1259-1265. PubMed ID: 28686493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme.
    Fernández PS; Peck MW
    Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gamma-ray sterilization and residual toxicity studies of ground beef inoculated with spores of Clostridium botulinum.
    KEMPE LL; GRAIKOSKI JT
    Appl Microbiol; 1962 Jan; 10(1):31-6. PubMed ID: 14455088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a 'sous-vide' beef goulash under temperature abuse.
    Aran N
    Int J Food Microbiol; 2001 Jan; 63(1-2):117-23. PubMed ID: 11205943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of Clostridium botulinum gas and protease production on culture conditions.
    Montville TJ
    Appl Environ Microbiol; 1983 Feb; 45(2):571-5. PubMed ID: 6338828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures.
    Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC
    Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the ability of proteolytic Clostridium botulinum to multiply and produce toxin in fresh Italian pasta.
    Del Torre M; Stecchini ML; Peck MW
    J Food Prot; 1998 Aug; 61(8):988-93. PubMed ID: 9713759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pH and NaCl on growth from spores of non-proteolytic Clostridium botulinum at chill temperature.
    Graham AF; Mason DR; Maxwell FJ; Peck MW
    Lett Appl Microbiol; 1997 Feb; 24(2):95-100. PubMed ID: 9081311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium nitrite and sorbic acid effects on Clostridium botulinum spore germination and total microbial growth in chicken frankfurter emulsions during temperature abuse.
    Sofos JN; Busta FF; Allen CE
    Appl Environ Microbiol; 1979 Jun; 37(6):1103-9. PubMed ID: 384904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavior of Listeria monocytogenes at 7 degrees C in commercial turkey breast, with or without antimicrobials, after simulated contamination for manufacturing, retail and consumer settings.
    Lianou A; Geornaras I; Kendall PA; Scanga JA; Sofos JN
    Food Microbiol; 2007 Aug; 24(5):433-43. PubMed ID: 17367676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of diacetate with nitrite, lactate, or pediocin on the viability of Listeria monocytogenes in turkey slurries.
    Schlyter JH; Glass KA; Loeffelholz J; Degnan AJ; Luchansky JB
    Int J Food Microbiol; 1993 Sep; 19(4):271-81. PubMed ID: 8257656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef.
    Juneja VK; Purohit AS; Golden M; Osoria M; Glass KA; Mishra A; Thippareddi H; Devkumar G; Mohr TB; Minocha U; Silverman M; Schaffner DW
    Food Microbiol; 2021 Feb; 93():103618. PubMed ID: 32912576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors that contribute to the botulinal safety of reduced-fat and fat-free process chesse products.
    Glass KA; Johnson EA
    J Food Prot; 2004 Aug; 67(8):1687-93. PubMed ID: 15330535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.