These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 26794208)
1. Photopolymerization of Dienoyl Lipids Creates Planar Supported Poly(lipid) Membranes with Retained Fluidity. Orosz KS; Jones IW; Keogh JP; Smith CM; Griffin KR; Xu J; Comi TJ; Hall HK; Saavedra SS Langmuir; 2016 Feb; 32(6):1577-84. PubMed ID: 26794208 [TBL] [Abstract][Full Text] [Related]
2. Nanodomain Formation in Planar Supported Lipid Bilayers Composed of Fluid and Polymerized Dienoyl Lipids. Fonseka NM; Liang B; Orosz KS; Jones IW; Hall HK; Christie HS; Aspinwall CA; Saavedra SS Langmuir; 2019 Sep; 35(38):12483-12491. PubMed ID: 31454251 [TBL] [Abstract][Full Text] [Related]
3. Nanomechanical Properties of Artificial Lipid Bilayers Composed of Fluid and Polymerizable Lipids. Fonseka NM; Arce FT; Christie HS; Aspinwall CA; Saavedra SS Langmuir; 2022 Jan; 38(1):100-111. PubMed ID: 34968052 [TBL] [Abstract][Full Text] [Related]
4. Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. Heitz BA; Xu J; Jones IW; Keogh JP; Comi TJ; Hall HK; Aspinwall CA; Saavedra SS Langmuir; 2011 Mar; 27(5):1882-90. PubMed ID: 21226498 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of asymmetric planar supported bilayers composed of poly(bis-sorbylphosphatidylcholine) on n-octadecyltrichlorosilane SAMs. Ratnayaka SN; Wysocki RJ; Saavedra SS J Colloid Interface Sci; 2008 Nov; 327(1):63-74. PubMed ID: 18755471 [TBL] [Abstract][Full Text] [Related]
6. Reconstitution of rhodopsin into polymerizable planar supported lipid bilayers: influence of dienoyl monomer structure on photoactivation. Subramaniam V; D'Ambruoso GD; Hall HK; Wysocki RJ; Brown MF; Saavedra SS Langmuir; 2008 Oct; 24(19):11067-75. PubMed ID: 18759470 [TBL] [Abstract][Full Text] [Related]
7. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. Heitz BA; Jones IW; Hall HK; Aspinwall CA; Saavedra SS J Am Chem Soc; 2010 May; 132(20):7086-93. PubMed ID: 20441163 [TBL] [Abstract][Full Text] [Related]
8. Enhanced long-term stability for single ion channel recordings using suspended poly(lipid) bilayers. Heitz BA; Xu J; Hall HK; Aspinwall CA; Saavedra SS J Am Chem Soc; 2009 May; 131(19):6662-3. PubMed ID: 19397328 [TBL] [Abstract][Full Text] [Related]
9. Rhodopsin reconstituted into a planar-supported lipid bilayer retains photoactivity after cross-linking polymerization of lipid monomers. Subramaniam V; Alves ID; Salgado GF; Lau PW; Wysocki RJ; Salamon Z; Tollin G; Hruby VJ; Brown MF; Saavedra SS J Am Chem Soc; 2005 Apr; 127(15):5320-1. PubMed ID: 15826160 [TBL] [Abstract][Full Text] [Related]
10. Fluid supported lipid bilayers containing monosialoganglioside GM1: a QCM-D and FRAP study. Weng KC; Kanter JL; Robinson WH; Frank CW Colloids Surf B Biointerfaces; 2006 Jun; 50(1):76-84. PubMed ID: 16730958 [TBL] [Abstract][Full Text] [Related]
11. Material properties of matrix lipids determine the conformation and intermolecular reactivity of diacetylenic phosphatidylcholine in the lipid bilayer. Puri A; Jang H; Yavlovich A; Masood MA; Veenstra TD; Luna C; Aranda-Espinoza H; Nussinov R; Blumenthal R Langmuir; 2011 Dec; 27(24):15120-8. PubMed ID: 22053903 [TBL] [Abstract][Full Text] [Related]
12. Photoinduced destabilization of liposomes. Lamparski H; Liman U; Barry JA; Frankel DA; Ramaswami V; Brown MF; O'Brien DF Biochemistry; 1992 Jan; 31(3):685-94. PubMed ID: 1731924 [TBL] [Abstract][Full Text] [Related]
14. Micropatterned composite membranes of polymerized and fluid lipid bilayers. Morigaki K; Kiyosue K; Taguchi T Langmuir; 2004 Aug; 20(18):7729-35. PubMed ID: 15323525 [TBL] [Abstract][Full Text] [Related]
15. Ceramide-mediation of diffusion in supported lipid bilayers. Hossain M; Blanchard GJ Chem Phys Lipids; 2021 Aug; 238():105090. PubMed ID: 33971138 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems. Haratake M; Osei-Asante S; Fuchigami T; Nakayama M Colloids Surf B Biointerfaces; 2012 Dec; 100():190-6. PubMed ID: 22766297 [TBL] [Abstract][Full Text] [Related]
17. Formation, stability, and mobility of one-dimensional lipid bilayers on polysilicon nanowires. Huang SC; Artyukhin AB; Martinez JA; Sirbuly DJ; Wang Y; Ju JW; Stroeve P; Noy A Nano Lett; 2007 Nov; 7(11):3355-9. PubMed ID: 17900161 [TBL] [Abstract][Full Text] [Related]
18. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Kiessling V; Crane JM; Tamm LK Biophys J; 2006 Nov; 91(9):3313-26. PubMed ID: 16905614 [TBL] [Abstract][Full Text] [Related]
19. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Deverall MA; Gindl E; Sinner EK; Besir H; Ruehe J; Saxton MJ; Naumann CA Biophys J; 2005 Mar; 88(3):1875-86. PubMed ID: 15613633 [TBL] [Abstract][Full Text] [Related]
20. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Crane JM; Tamm LK Biophys J; 2004 May; 86(5):2965-79. PubMed ID: 15111412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]