BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26794662)

  • 1. Development of a human physiologically based pharmacokinetic (PBPK) model for dermal permeability for lindane.
    Sawyer ME; Evans MV; Wilson CA; Beesley LJ; Leon LS; Eklund CR; Croom EL; Pegram RA
    Toxicol Lett; 2016 Mar; 245():106-9. PubMed ID: 26794662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment.
    Knaak JB; Dary CC; Zhang X; Gerlach RW; Tornero-Velez R; Chang DT; Goldsmith R; Blancato JN
    Rev Environ Contam Toxicol; 2012; 219():1-114. PubMed ID: 22610175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative percutaneous absorption of lindane and permethrin.
    Franz TJ; Lehman PA; Franz SF; Guin JD
    Arch Dermatol; 1996 Aug; 132(8):901-5. PubMed ID: 8712839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of soil loading on dermal absorption efficiency from contaminated soils.
    Duff RM; Kissel JC
    J Toxicol Environ Health; 1996 May; 48(1):93-106. PubMed ID: 8637061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiologically based pharmacokinetic model of organophosphate dermal absorption.
    van der Merwe D; Brooks JD; Gehring R; Baynes RE; Monteiro-Riviere NA; Riviere JE
    Toxicol Sci; 2006 Jan; 89(1):188-204. PubMed ID: 16221965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds.
    Roy A; Weisel CP; Lioy PJ; Georgopoulos PG
    Risk Anal; 1996 Apr; 16(2):147-60. PubMed ID: 8638037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of PBPK model structure on interpretation of in vivo human aqueous dermal exposure trials.
    Norman AM; Kissel JC; Shirai JH; Smith JA; Stumbaugh KL; Bunge AL
    Toxicol Sci; 2008 Jul; 104(1):210-7. PubMed ID: 18381354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malathion dermal permeability in relation to dermal load: Assessment by physiologically based pharmacokinetic modeling of in vivo human data.
    Bogen KT; Singhal A
    J Environ Sci Health B; 2017 Feb; 52(2):138-146. PubMed ID: 27820679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayered dermal subcompartments for modeling chemical absorption.
    Bookout RL; McDaniel CR; Quinn DW; McDougal JN
    SAR QSAR Environ Res; 1996; 5(3):133-50. PubMed ID: 9114511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The percutaneous absorption and skin distribution of lindane in man. I. In vivo studies.
    Dick IP; Blain PG; Williams FM
    Hum Exp Toxicol; 1997 Nov; 16(11):645-51. PubMed ID: 9426365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of dermal absorption by thermogravimetric analysis: Development of a diffusion model based on Fick's second law.
    Rauma M; Johanson G
    J Pharm Sci; 2009 Nov; 98(11):4365-75. PubMed ID: 19283759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dermic diffusion and stratum corneum: a state of the art review of mathematical models.
    Couto A; Fernandes R; Cordeiro MN; Reis SS; Ribeiro RT; Pessoa AM
    J Control Release; 2014 Mar; 177():74-83. PubMed ID: 24362041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Silico Estimation of Skin Concentration Following the Dermal Exposure to Chemicals.
    Hatanaka T; Yoshida S; Kadhum WR; Todo H; Sugibayashi K
    Pharm Res; 2015 Dec; 32(12):3965-74. PubMed ID: 26195007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PBPK models for the prediction of in vivo performance of oral dosage forms.
    Kostewicz ES; Aarons L; Bergstrand M; Bolger MB; Galetin A; Hatley O; Jamei M; Lloyd R; Pepin X; Rostami-Hodjegan A; Sjögren E; Tannergren C; Turner DB; Wagner C; Weitschies W; Dressman J
    Eur J Pharm Sci; 2014 Jun; 57():300-21. PubMed ID: 24060672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of the dermal route of exposure to risk assessment.
    Mattie DR; Grabau JH; McDougal JN
    Risk Anal; 1994 Jun; 14(3):277-84. PubMed ID: 8029499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the human skin grafted onto nude mouse model with in vivo and in vitro models in the prediction of percutaneous penetration of three lipophilic pesticides.
    Capt A; Luzy AP; Esdaile D; Blanck O
    Regul Toxicol Pharmacol; 2007 Apr; 47(3):274-87. PubMed ID: 17239512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Age-Related Pyrethroid Pharmacokinetic Differences in Rats: Physiologically-Based Pharmacokinetic Model Development Using In Vitro Data and In Vitro to In Vivo Extrapolation.
    Song G; Moreau M; Efremenko A; Lake BG; Wu H; Bruckner JV; White CA; Osimitz TG; Creek MR; Hinderliter PM; Clewell HJ; Yoon M
    Toxicol Sci; 2019 Jun; 169(2):365-379. PubMed ID: 30768128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a better understanding of pesticide dermal absorption: diffusion model analysis of parathion absorption in vitro and in vivo.
    Miller MA; Kasting GB
    J Toxicol Environ Health A; 2010; 73(4):284-300. PubMed ID: 20077298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The percutaneous absorption and skin distribution of lindane in man. II. In vitro studies.
    Dick IP; Blain PG; Williams FM
    Hum Exp Toxicol; 1997 Nov; 16(11):652-7. PubMed ID: 9426366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.