BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26794965)

  • 1. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea.
    Salla TD; Astarita LV; Santarém ER
    Planta; 2016 Apr; 243(4):1055-70. PubMed ID: 26794965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.
    Salla TD; da Silva R; Astarita LV; Santarém ER
    Plant Physiol Biochem; 2014 Dec; 85():14-20. PubMed ID: 25394796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp.
    Paz ICP; Santin RCM; Guimarães AM; Rosa OPPD; Quecine MC; Silva MCPE; Azevedo JL; Matsumura ATS
    Microb Pathog; 2018 Aug; 121():106-109. PubMed ID: 29777829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the tri-dimensional effect of endophytic Streptomyces sp. on chickpea for plant growth promotion, helper effect with Mesorhizobium ciceri and host-plant resistance induction against Botrytis cinerea.
    Vijayabharathi R; Gopalakrishnan S; Sathya A; Srinivas V; Sharma M
    Microb Pathog; 2018 Sep; 122():98-107. PubMed ID: 29894808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A.
    Xiao L; Niu HJ; Qu TL; Zhang XF; Du FY
    Pestic Biochem Physiol; 2021 Jun; 175():104834. PubMed ID: 33993959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.
    Rupp S; Plesken C; Rumsey S; Dowling M; Schnabel G; Weber RWS; Hahn M
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235878
    [No Abstract]   [Full Text] [Related]  

  • 7. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomycin-producing
    Louviot F; Abdelrahman O; Abou-Mansour E; L'Haridon F; Allard P-M; Falquet L; Weisskopf L
    mSphere; 2024 Jun; ():e0066723. PubMed ID: 38864637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms and strategies of plant defense against Botrytis cinerea.
    AbuQamar S; Moustafa K; Tran LS
    Crit Rev Biotechnol; 2017 Mar; 37(2):262-274. PubMed ID: 28056558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the multitrophic interactions between the biocontrol agent Bacillus subtilis MBI 600, the pathogen Botrytis cinerea and their plant host.
    Samaras A; Karaoglanidis GS; Tzelepis G
    Microbiol Res; 2021 Jul; 248():126752. PubMed ID: 33839506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis thaliana: a model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea.
    González J; Reyes F; Salas C; Santiag M; Codriansky Y; Coliheuque N; Silva H
    Biol Res; 2006; 39(2):221-8. PubMed ID: 16874397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indole-3-acetic acid enhances the biocontrol of Penicillium expansum and Botrytis cinerea on pear fruit by Cryptococcus laurentii.
    Yu T; Zheng XD
    FEMS Yeast Res; 2007 May; 7(3):459-64. PubMed ID: 17286561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea.
    Narayan OP; Verma N; Singh AK; Oelmüller R; Kumar M; Prasad D; Kapoor R; Dua M; Johri AK
    Sci Rep; 2017 Oct; 7(1):13553. PubMed ID: 29051515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V; Danit LV; Siewers V; Schulze-Gronover C; Tudzynski P; Tudzynski B; Sharon A
    Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens.
    Ponce de León I; Oliver JP; Castro A; Gaggero C; Bentancor M; Vidal S
    BMC Plant Biol; 2007 Oct; 7():52. PubMed ID: 17922917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways.
    Kurth F; Mailänder S; Bönn M; Feldhahn L; Herrmann S; Große I; Buscot F; Schrey SD; Tarkka MT
    Mol Plant Microbe Interact; 2014 Sep; 27(9):891-900. PubMed ID: 24779643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems.
    Lacrampe N; Colombié S; Dumont D; Nicot P; Lecompte F; Lugan R
    Planta; 2023 Jan; 257(2):41. PubMed ID: 36680621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism.
    Xu D; Deng Y; Xi P; Yu G; Wang Q; Zeng Q; Jiang Z; Gao L
    Food Chem; 2019 Jul; 286():226-233. PubMed ID: 30827600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.