These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 26795088)

  • 21. Structural Insights into the Altering Function of CRMP2 by Phosphorylation.
    Sumi T; Imasaki T; Aoki M; Sakai N; Nitta E; Shirouzu M; Nitta R
    Cell Struct Funct; 2018; 43(1):15-23. PubMed ID: 29479005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus.
    Jin X; Sasamoto K; Nagai J; Yamazaki Y; Saito K; Goshima Y; Inoue T; Ohshima T
    Neural Plast; 2016; 2016():6790743. PubMed ID: 26819770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat.
    Bregman BS; McAtee M; Dai HN; Kuhn PL
    Exp Neurol; 1997 Dec; 148(2):475-94. PubMed ID: 9417827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interferon-γ decreases chondroitin sulfate proteoglycan expression and enhances hindlimb function after spinal cord injury in mice.
    Fujiyoshi T; Kubo T; Chan CC; Koda M; Okawa A; Takahashi K; Yamazaki M
    J Neurotrauma; 2010 Dec; 27(12):2283-94. PubMed ID: 20925481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment.
    Watamura N; Toba J; Yoshii A; Nikkuni M; Ohshima T
    J Neurosci Res; 2016 Jan; 94(1):15-26. PubMed ID: 26400044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling.
    Garza JC; Qi X; Gjeluci K; Leussis MP; Basu H; Reis SA; Zhao WN; Piguel NH; Penzes P; Haggarty SJ; Martens GJ; Poelmans G; Petryshen TL
    Transl Psychiatry; 2018 Jul; 8(1):135. PubMed ID: 30046097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury.
    Dyck S; Kataria H; Alizadeh A; Santhosh KT; Lang B; Silver J; Karimi-Abdolrezaee S
    J Neuroinflammation; 2018 Mar; 15(1):90. PubMed ID: 29558941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone marrow stromal cells promote neuroplasticity of cerebral ischemic rats via a phosphorylated CRMP2-mediated mechanism.
    He X; Jiang L; Dan QQ; Lv Q; Hu Y; Liu J; Wang SF; Wang TH
    Behav Brain Res; 2017 Mar; 320():494-503. PubMed ID: 27765673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rho-associated kinase II (ROCKII) limits axonal growth after trauma within the adult mouse spinal cord.
    Duffy P; Schmandke A; Schmandke A; Sigworth J; Narumiya S; Cafferty WB; Strittmatter SM
    J Neurosci; 2009 Dec; 29(48):15266-76. PubMed ID: 19955379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PACAP stimulates functional recovery after spinal cord injury through axonal regeneration.
    Tsuchida M; Nakamachi T; Sugiyama K; Tsuchikawa D; Watanabe J; Hori M; Yoshikawa A; Imai N; Kagami N; Matkovits A; Atsumi T; Shioda S
    J Mol Neurosci; 2014 Nov; 54(3):380-7. PubMed ID: 25074795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS.
    Dill J; Wang H; Zhou F; Li S
    J Neurosci; 2008 Sep; 28(36):8914-28. PubMed ID: 18768685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resistance of interleukin-6 to the extracellular inhibitory environment promotes axonal regeneration and functional recovery following spinal cord injury.
    Yang G; Tang WY
    Int J Mol Med; 2017 Feb; 39(2):437-445. PubMed ID: 28075461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury.
    Wang Z; Winsor K; Nienhaus C; Hess E; Blackmore MG
    Neurobiol Dis; 2017 Mar; 99():24-35. PubMed ID: 27988344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity.
    Hou ST; Jiang SX; Aylsworth A; Ferguson G; Slinn J; Hu H; Leung T; Kappler J; Kaibuchi K
    J Neurochem; 2009 Nov; 111(3):870-81. PubMed ID: 19735446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury.
    McKillop WM; Dragan M; Schedl A; Brown A
    Glia; 2013 Feb; 61(2):164-77. PubMed ID: 23027386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylated CRMP2 Regulates Spinal Nociceptive Neurotransmission.
    Yu J; Moutal A; Dorame A; Bellampalli SS; Chefdeville A; Kanazawa I; Pham NYN; Park KD; Weimer JM; Khanna R
    Mol Neurobiol; 2019 Jul; 56(7):5241-5255. PubMed ID: 30565051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NT-3 promotes proprioceptive axon regeneration when combined with activation of the mTor intrinsic growth pathway but not with reduction of myelin extrinsic inhibitors.
    Liu Y; Kelamangalath L; Kim H; Han SB; Tang X; Zhai J; Hong JW; Lin S; Son YJ; Smith GM
    Exp Neurol; 2016 Sep; 283(Pt A):73-84. PubMed ID: 27264357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury.
    Song XY; Li F; Zhang FH; Zhong JH; Zhou XF
    PLoS One; 2008 Mar; 3(3):e1707. PubMed ID: 18320028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.