BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26795119)

  • 1. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy.
    Wang C; Shi X; Li W; Wang L; Zhang J; Yang C; Wang Z
    Mar Pollut Bull; 2016 Mar; 104(1-2):322-8. PubMed ID: 26795119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil source recognition technology using concentration-synchronous-matrix-fluorescence spectroscopy combined with 2D wavelet packet and probabilistic neural network.
    Huang XD; Wang CY; Fan XM; Zhang JL; Yang C; Wang ZD
    Sci Total Environ; 2018 Mar; 616-617():632-638. PubMed ID: 29103640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Oil spill identification using partial surface fitting method based on concentration-synchronous-matrix-fluorescence spectra].
    Wang CY; Shi XF; Li WD; Zhang JL
    Huan Jing Ke Xue; 2014 Jan; 35(1):202-7. PubMed ID: 24720205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine.
    Chen Y; Yang R; Zhao N; Zhu W; Chen X; Zhang R; Liu J; Liu W
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33158094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis.
    Mirnaghi FS; Soucy N; Hollebone BP; Brown CE
    Chemosphere; 2018 Oct; 208():185-195. PubMed ID: 29864709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of polycyclic aromatic hydrocarbon contamination at four oil spill sites using fluorescence spectroscopy coupled with parallel factor-principal component analysis.
    Mirnaghi FS; Pinchin NP; Yang Z; Hollebone BP; Lambert P; Brown CE
    Environ Sci Process Impacts; 2019 Mar; 21(3):413-426. PubMed ID: 30652177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill.
    Adhikari PL; Wong RL; Overton EB
    Chemosphere; 2017 Oct; 184():939-950. PubMed ID: 28655113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of synchronous fluorescence in identification of spilled oil at sea].
    Jiang FH; Zhao ML; Han B; Zheng L; Wang XR; Lee FS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):154-7. PubMed ID: 21428078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill.
    Mendoza WG; Riemer DD; Zika RG
    Environ Sci Process Impacts; 2013 May; 15(5):1017-30. PubMed ID: 23546220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China.
    Wang C; Chen B; Zhang B; He S; Zhao M
    Mar Pollut Bull; 2013 Jun; 71(1-2):64-8. PubMed ID: 23623662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species identification and concentration quantification of crude oil samples in petroleum exploration using the concentration-synchronous-matrix-fluorescence spectroscopy.
    Wang C; Li W; Luan X; Liu Q; Zhang J; Zheng R
    Talanta; 2010 Apr; 81(1-2):684-91. PubMed ID: 20188982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline.
    Mulabagal V; Yin F; John GF; Hayworth JS; Clement TP
    Mar Pollut Bull; 2013 May; 70(1-2):147-54. PubMed ID: 23523118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handheld UV fluorescence spectrophotometer device for the classification and analysis of petroleum oil samples.
    Bills MV; Loh A; Sosnowski K; Nguyen BT; Ha SY; Yim UH; Yoon JY
    Biosens Bioelectron; 2020 Jul; 159():112193. PubMed ID: 32364941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Oil spill identification by near-infrared spectroscopy].
    Wang L; Zhuo L; He Y; Zhao Y; Li W; Wang XR; Lee F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1537-9. PubMed ID: 15828320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of photochemical processes in marine oil spill fingerprinting.
    Radović JR; Aeppli C; Nelson RK; Jimenez N; Reddy CM; Bayona JM; Albaigés J
    Mar Pollut Bull; 2014 Feb; 79(1-2):268-77. PubMed ID: 24355571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental impact and recovery of the Bohai Sea following the 2011 oil spill.
    Wang Y; Lee K; Liu D; Guo J; Han Q; Liu X; Zhang J
    Environ Pollut; 2020 Aug; 263(Pt B):114343. PubMed ID: 32234643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining molecular fingerprints with multidimensional scaling analyses to identify the source of spilled oil from highly similar suspected oils.
    Zhou P; Chen C; Ye J; Shen W; Xiong X; Hu P; Fang H; Huang C; Sun Y
    Mar Pollut Bull; 2015 Apr; 93(1-2):121-9. PubMed ID: 25765488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling oil weathering and transport in sea ice.
    Afenyo M; Khan F; Veitch B; Yang M
    Mar Pollut Bull; 2016 Jun; 107(1):206-215. PubMed ID: 27130467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A data-driven framework for defining stages of oil weathering.
    Cook LL; Drollette BD; Edwards MR; Benton LD; Boehm PD
    Mar Pollut Bull; 2020 May; 154():111091. PubMed ID: 32319920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.
    Xu Q; Li X; Wei Y; Tang Z; Cheng Y; Pichel WG
    Mar Pollut Bull; 2013 Jun; 71(1-2):107-16. PubMed ID: 23618498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.