These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26795151)
1. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. Skorupa M; Gołębiewski M; Domagalski K; Kurnik K; Abu Nahia K; Złoch M; Tretyn A; Tyburski J Plant Sci; 2016 Feb; 243():56-70. PubMed ID: 26795151 [TBL] [Abstract][Full Text] [Related]
2. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor. Skorupa M; Gołębiewski M; Kurnik K; Niedojadło J; Kęsy J; Klamkowski K; Wójcik K; Treder W; Tretyn A; Tyburski J BMC Plant Biol; 2019 Feb; 19(1):57. PubMed ID: 30727960 [TBL] [Abstract][Full Text] [Related]
3. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Lv X; Jin Y; Wang Y Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503 [TBL] [Abstract][Full Text] [Related]
4. Salt stress and salt shock differently affect DNA methylation in salt-responsive genes in sugar beet and its wild, halophytic ancestor. Skorupa M; Szczepanek J; Mazur J; Domagalski K; Tretyn A; Tyburski J PLoS One; 2021; 16(5):e0251675. PubMed ID: 34043649 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Zou C; Liu D; Wu P; Wang Y; Gai Z; Liu L; Yang F; Li C; Guo G Plant Mol Biol; 2020 Apr; 102(6):645-657. PubMed ID: 32040759 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet. Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274 [TBL] [Abstract][Full Text] [Related]
7. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917 [TBL] [Abstract][Full Text] [Related]
8. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. Yang L; Ma C; Wang L; Chen S; Li H J Plant Physiol; 2012 Jun; 169(9):839-50. PubMed ID: 22498239 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. Wang J; Li B; Meng Y; Ma X; Lai Y; Si E; Yang K; Ren P; Shang X; Wang H BMC Genomics; 2015 Mar; 16(1):169. PubMed ID: 25880042 [TBL] [Abstract][Full Text] [Related]
10. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291 [TBL] [Abstract][Full Text] [Related]
11. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590 [TBL] [Abstract][Full Text] [Related]
12. Salt and Drought Stress Responses in Cultivated Beets ( Yolcu S; Alavilli H; Ganesh P; Panigrahy M; Song K Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579375 [TBL] [Abstract][Full Text] [Related]
13. Identification of candidate genes related to salt tolerance of the secretohalophyte Atriplex canescens by transcriptomic analysis. Guo H; Zhang L; Cui YN; Wang SM; Bao AK BMC Plant Biol; 2019 May; 19(1):213. PubMed ID: 31117942 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
15. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996 [TBL] [Abstract][Full Text] [Related]
16. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization. Sahu BB; Shaw BP BMC Plant Biol; 2009 Jun; 9():69. PubMed ID: 19497134 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis of genes involved in Na Wang J; Li B; Yao L; Meng Y; Ma X; Lai Y; Si E; Ren P; Yang K; Shang X; Wang H Gene; 2018 Dec; 678():407-416. PubMed ID: 30096457 [TBL] [Abstract][Full Text] [Related]
18. Genomes of the wild beets Beta patula and Beta vulgaris ssp. maritima. Rodríguez Del Río Á; Minoche AE; Zwickl NF; Friedrich A; Liedtke S; Schmidt T; Himmelbauer H; Dohm JC Plant J; 2019 Sep; 99(6):1242-1253. PubMed ID: 31104348 [TBL] [Abstract][Full Text] [Related]
19. Characteristic of the Ascorbate Oxidase Gene Family in Skorupa M; Szczepanek J; Yolcu S; Mazur J; Tretyn A; Tyburski J Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361565 [TBL] [Abstract][Full Text] [Related]
20. Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Tounekti T; Hernández I; Müller M; Khemira H; Munné-Bosch S Plant Physiol Biochem; 2011 Oct; 49(10):1165-76. PubMed ID: 21856165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]