These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26795195)

  • 1. An online three-class Transcranial Doppler ultrasound brain computer interface.
    Goyal A; Samadani AA; Guerguerian AM; Chau T
    Neurosci Res; 2016 Jun; 107():47-56. PubMed ID: 26795195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential hypothesis testing for automatic detection of task-related changes in cerebral perfusion in a brain-computer interface.
    Faulkner HG; Myrden A; Li M; Mamun K; Chau T
    Neurosci Res; 2015 Nov; 100():29-38. PubMed ID: 26163771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards increased data transmission rate for a three-class metabolic brain-computer interface based on transcranial Doppler ultrasound.
    Myrden A; Kushki A; Sejdić E; Chau T
    Neurosci Lett; 2012 Oct; 528(2):99-103. PubMed ID: 23006241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online transcranial Doppler ultrasonographic control of an onscreen keyboard.
    Lu J; Mamun KA; Chau T
    Front Hum Neurosci; 2014; 8():199. PubMed ID: 24795590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a hemodynamic BCI using transcranial Doppler without user-specific training data.
    Aleem I; Chau T
    J Neural Eng; 2013 Feb; 10(1):016005. PubMed ID: 23234760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a multimodal brain-computer interface: combining fNIRS and fTCD measurements to enable higher classification accuracy.
    Faress A; Chau T
    Neuroimage; 2013 Aug; 77():186-94. PubMed ID: 23541802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 Feb; 313():44-53. PubMed ID: 30590086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a ternary NIRS-BCI: single-trial classification of verbal fluency task, Stroop task and unconstrained rest.
    C Schudlo L; Chau T
    J Neural Eng; 2015 Dec; 12(6):066008. PubMed ID: 26447770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and testing an online near-infrared spectroscopy brain-computer interface tailored to an individual with severe congenital motor impairments.
    Schudlo LC; Chau T
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):581-591. PubMed ID: 28758809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Ternary Near-Infrared Spectroscopy Brain-Computer Interface: Online Classification of Verbal Fluency Task, Stroop Task and Rest.
    Schudlo LC; Chau T
    Int J Neural Syst; 2018 May; 28(4):1750052. PubMed ID: 29281922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 May; 320():98-106. PubMed ID: 30946880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A brain-computer interface based on functional transcranial doppler ultrasound using wavelet transform and support vector machines.
    Khalaf A; Sybeldon M; Sejdic E; Akcakaya M
    J Neurosci Methods; 2018 Jan; 293():174-182. PubMed ID: 29017899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonspecific Visuospatial Imagery as a Novel Mental Task for Online EEG-Based BCI Control.
    Stojic F; Chau T
    Int J Neural Syst; 2020 Jun; 30(6):2050026. PubMed ID: 32498642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the control of brain-computer interfaces by users with cerebral palsy.
    Daly I; Billinger M; Laparra-Hernández J; Aloise F; García ML; Faller J; Scherer R; Müller-Putz G
    Clin Neurophysiol; 2013 Sep; 124(9):1787-97. PubMed ID: 23684128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic topographical pattern classification of multichannel prefrontal NIRS signals: II. Online differentiation of mental arithmetic and rest.
    Schudlo LC; Chau T
    J Neural Eng; 2014 Feb; 11(1):016003. PubMed ID: 24311057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.