BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26795467)

  • 1. Multidimensional Monitoring of Keratin Intermediate Filaments in Cultured Cells and Tissues.
    Schwarz N; Moch M; Windoffer R; Leube RE
    Methods Enzymol; 2016; 568():59-83. PubMed ID: 26795467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.
    Windoffer R; Beil M; Magin TM; Leube RE
    J Cell Biol; 2011 Sep; 194(5):669-78. PubMed ID: 21893596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the regulation of keratin filament network dynamics.
    Moch M; Herberich G; Aach T; Leube RE; Windoffer R
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10664-9. PubMed ID: 23757496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Keratin filaments in epithelial cells of the excretory ducts of rabbit submandibular glands--an immunohistochemical and ultraimmunohistochemical study].
    Ogawa C; Iwatsuki H; Sasaki K; Kumano I
    Kaibogaku Zasshi; 2001 Aug; 76(4):389-98. PubMed ID: 11577441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel principles of keratin filament network turnover in living cells.
    Windoffer R; Wöll S; Strnad P; Leube RE
    Mol Biol Cell; 2004 May; 15(5):2436-48. PubMed ID: 15004233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keratins and the plakin family cytolinker proteins control the length of epithelial microridge protrusions.
    Inaba Y; Chauhan V; van Loon AP; Choudhury LS; Sagasti A
    Elife; 2020 Sep; 9():. PubMed ID: 32894222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly dynamics of epidermal keratins K1 and K10 in transfected cells.
    Paramio JM; Jorcano JL
    Exp Cell Res; 1994 Dec; 215(2):319-31. PubMed ID: 7526994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of trichoplein, a novel keratin filament-binding protein.
    Nishizawa M; Izawa I; Inoko A; Hayashi Y; Nagata K; Yokoyama T; Usukura J; Inagaki M
    J Cell Sci; 2005 Mar; 118(Pt 5):1081-90. PubMed ID: 15731013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of phosphorylation in keratin and vimentin filament integrity in cultured thyroid epithelial cells.
    Deery WJ
    Cell Motil Cytoskeleton; 1993; 26(4):325-39. PubMed ID: 7507800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assays to Study Consequences of Cytoplasmic Intermediate Filament Mutations: The Case of Epidermal Keratins.
    Tan TS; Ng YZ; Badowski C; Dang T; Common JE; Lacina L; Szeverényi I; Lane EB
    Methods Enzymol; 2016; 568():219-53. PubMed ID: 26795473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The keratin-filament cycle of assembly and disassembly.
    Kölsch A; Windoffer R; Würflinger T; Aach T; Leube RE
    J Cell Sci; 2010 Jul; 123(Pt 13):2266-72. PubMed ID: 20554896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keratin 20 helps maintain intermediate filament organization in intestinal epithelia.
    Zhou Q; Toivola DM; Feng N; Greenberg HB; Franke WW; Omary MB
    Mol Biol Cell; 2003 Jul; 14(7):2959-71. PubMed ID: 12857878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of keratin network formation, turnover and reorganization in living murine embryos.
    Schwarz N; Windoffer R; Magin TM; Leube RE
    Sci Rep; 2015 Mar; 5():9007. PubMed ID: 25759143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization.
    Wang Q; Griffin H; Southern S; Jackson D; Martin A; McIntosh P; Davy C; Masterson PJ; Walker PA; Laskey P; Omary MB; Doorbar J
    J Virol; 2004 Jan; 78(2):821-33. PubMed ID: 14694114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen-deuterium exchange.
    Premchandar A; Kupniewska A; Tarnowski K; Mücke N; Mauermann M; Kaus-Drobek M; Edelman A; Herrmann H; Dadlez M
    J Struct Biol; 2015 Dec; 192(3):426-440. PubMed ID: 26434626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence-based methods for studying intermediate filaments.
    Flitney EW; Goldman RD
    Methods Cell Biol; 2004; 78():297-319. PubMed ID: 15646623
    [No Abstract]   [Full Text] [Related]  

  • 17. The keratin-desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis.
    Moch M; Schwarz N; Windoffer R; Leube RE
    Cell Mol Life Sci; 2020 Feb; 77(3):543-558. PubMed ID: 31243490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of keratin phosphorylation on the mechanical properties of keratin filaments in living cells.
    Fois G; Weimer M; Busch T; Felder ET; Oswald F; von Wichert G; Seufferlein T; Dietl P; Felder E
    FASEB J; 2013 Apr; 27(4):1322-9. PubMed ID: 23241311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of keratin filament networks in scanning electron microscopy images of cancer cells.
    Beil M; Braxmeier H; Fleischer F; Schmidt V; Walther P
    J Microsc; 2005 Nov; 220(Pt 2):84-95. PubMed ID: 16313488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The analysis of intermediate filament dynamics using transfections and cell fusions.
    Paramio JM
    Methods Mol Biol; 2009; 586():357-65. PubMed ID: 19768441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.