These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26795580)

  • 1. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.
    Zsuga J; Biro K; Papp C; Tajti G; Gesztelyi R
    Behav Neurosci; 2016 Feb; 130(1):6-18. PubMed ID: 26795580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Proactive' use of cue-context congruence for building reinforcement learning's reward function.
    Zsuga J; Biro K; Tajti G; Szilasi ME; Papp C; Juhasz B; Gesztelyi R
    BMC Neurosci; 2016 Oct; 17(1):70. PubMed ID: 27793098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posterior weighted reinforcement learning with state uncertainty.
    Larsen T; Leslie DS; Collins EJ; Bogacz R
    Neural Comput; 2010 May; 22(5):1149-79. PubMed ID: 20100078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An implementation of reinforcement learning based on spike timing dependent plasticity.
    Roberts PD; Santiago RA; Lafferriere G
    Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAwSu: an integrated model of associative and reinforcement learning.
    Veksler VD; Myers CW; Gluck KA
    Cogn Sci; 2014 Apr; 38(3):580-98. PubMed ID: 24460979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential contributions of the globus pallidus and ventral thalamus to stimulus-response learning in humans.
    Schroll H; Horn A; Gröschel C; Brücke C; Lütjens G; Schneider GH; Krauss JK; Kühn AA; Hamker FH
    Neuroimage; 2015 Nov; 122():233-45. PubMed ID: 26220740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxytocin attenuates trust as a subset of more general reinforcement learning, with altered reward circuit functional connectivity in males.
    Ide JS; Nedic S; Wong KF; Strey SL; Lawson EA; Dickerson BC; Wald LL; La Camera G; Mujica-Parodi LR
    Neuroimage; 2018 Jul; 174():35-43. PubMed ID: 29486321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexing signals in reinforcement learning with internal models and dopamine.
    Nakahara H
    Curr Opin Neurobiol; 2014 Apr; 25():123-9. PubMed ID: 24463329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory.
    Brovelli A; Laksiri N; Nazarian B; Meunier M; Boussaoud D
    Cereb Cortex; 2008 Jul; 18(7):1485-95. PubMed ID: 18033767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning.
    Haruno M; Kawato M
    J Neurophysiol; 2006 Feb; 95(2):948-59. PubMed ID: 16192338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward representations and reward-related learning in the human brain: insights from neuroimaging.
    O'Doherty JP
    Curr Opin Neurobiol; 2004 Dec; 14(6):769-76. PubMed ID: 15582382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple associative structures created by reinforcement and incidental statistical learning mechanisms.
    Klein-Flügge MC; Wittmann MK; Shpektor A; Jensen DEA; Rushworth MFS
    Nat Commun; 2019 Oct; 10(1):4835. PubMed ID: 31645545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting patterns of brain activation in human fear conditioning with an attentional-associative learning model.
    Dunsmoor J; Schmajuk N
    Behav Neurosci; 2009 Aug; 123(4):851-5. PubMed ID: 19634945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motivational neural circuits underlying reinforcement learning.
    Averbeck BB; Costa VD
    Nat Neurosci; 2017 Mar; 20(4):505-512. PubMed ID: 28352111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine, prediction error and associative learning: a model-based account.
    Smith A; Li M; Becker S; Kapur S
    Network; 2006 Mar; 17(1):61-84. PubMed ID: 16613795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural model of hierarchical reinforcement learning.
    Rasmussen D; Voelker A; Eliasmith C
    PLoS One; 2017; 12(7):e0180234. PubMed ID: 28683111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI.
    Krebs RM; Heipertz D; Schuetze H; Duzel E
    Neuroimage; 2011 Sep; 58(2):647-55. PubMed ID: 21723396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining neural signals in human visual cortex with an associative learning model.
    Jiang J; Schmajuk N; Egner T
    Behav Neurosci; 2012 Aug; 126(4):575-81. PubMed ID: 22845706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.