BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26795587)

  • 1. Characterization of β-N-acetylglucosaminidase from a marine Pseudoalteromonas sp. for application in N-acetyl-glucosamine production.
    Park HJ; Yim JH; Park H; Kim D
    Prep Biochem Biotechnol; 2016 Nov; 46(8):764-771. PubMed ID: 26795587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
    Matano C; Kolkenbrock S; Hamer SN; Sgobba E; Moerschbacher BM; Wendisch VF
    BMC Microbiol; 2016 Aug; 16(1):177. PubMed ID: 27492186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-N-Acetylglucosaminidase MthNAG from Myceliophthora thermophila C1, a thermostable enzyme for production of N-acetylglucosamine from chitin.
    Krolicka M; Hinz SWA; Koetsier MJ; Eggink G; van den Broek LAM; Boeriu CG
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7441-7454. PubMed ID: 29943052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chitinolytic endochitinase and β-N-acetylglucosaminidase-based system from Hevea latex in generating N-acetylglucosamine from chitin.
    Sukprasirt P; Wititsuwannakul R
    Phytochemistry; 2014 Aug; 104():5-11. PubMed ID: 24833032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of a chitinase from Pseudoalteromonas sp. DL-6, a marine psychrophilic bacterium.
    Wang X; Zhao Y; Tan H; Chi N; Zhang Q; Du Y; Yin H
    Int J Biol Macromol; 2014 Sep; 70():455-62. PubMed ID: 25064555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression and characterization of thermostable chitinase and β-N-acetylhexosaminidase from Caldicellulosiruptor acetigenus and their synergistic action on the bioconversion of chitin into N-acetyl-d-glucosamine.
    Qin X; Xin Y; Su X; Wang X; Zhang J; Tu T; Wang Y; Yao B; Huang H; Luo H
    Int J Biol Macromol; 2021 Dec; 192():250-257. PubMed ID: 34627844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii.
    Yang S; Fu X; Yan Q; Guo Y; Liu Z; Jiang Z
    Food Chem; 2016 Feb; 192():1041-8. PubMed ID: 26304445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An acidic, thermostable exochitinase with β-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine.
    Fu X; Yan Q; Yang S; Yang X; Guo Y; Jiang Z
    Biotechnol Biofuels; 2014; 7(1):174. PubMed ID: 25550712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a cold-adapted and salt-tolerant exo-chitinase (ChiC) from Pseudoalteromonas sp. DL-6.
    Wang X; Chi N; Bai F; Du Y; Zhao Y; Yin H
    Extremophiles; 2016 Mar; 20(2):167-76. PubMed ID: 26791384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of glycosyl hydrolase family 3 beta-N-acetylglucosaminidases from Thermotoga maritima and Thermotoga neapolitana.
    Choi KH; Seo JY; Park KM; Park CS; Cha J
    J Biosci Bioeng; 2009 Dec; 108(6):455-9. PubMed ID: 19914575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Expression and characterization of β-N-acetylglucosaminidases from Bacillus coagulans DSM1 for N-acetyl-β-D glucosamine production].
    Li C; Jiang S; Du C; Zhou Y; Jiang S; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):218-227. PubMed ID: 33501803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-Acetyl-D-glucosamine Production by a Chitinase of Marine Fungal Origin: a Case Study of Potential Industrial Significance for Valorization of Waste Chitins.
    Das S; Dey P; Roy D; Maiti MK; Sen R
    Appl Biochem Biotechnol; 2019 Jan; 187(1):407-423. PubMed ID: 29961902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of two β-N-acetylglucosaminidases from Streptomyces violascens for efficient production of N-acetyl-d-glucosamine.
    Li J; Gao K; Secundo F; Mao X
    Food Chem; 2021 Dec; 364():130393. PubMed ID: 34167004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi.
    Suresh PV; Anil Kumar PK
    Biodegradation; 2012 Jul; 23(4):597-607. PubMed ID: 22270691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azide anions inhibit GH-18 endochitinase and GH-20 Exo β-N-acetylglucosaminidase from the marine bacterium Vibrio harveyi.
    Sirimontree P; Fukamizo T; Suginta W
    J Biochem; 2016 Feb; 159(2):191-200. PubMed ID: 26330565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach for discovering cold-active enzymes in a cell mixture of pure-cultured bacteria.
    Kim D; Park HJ; Kim IC; Yim JH
    Biotechnol Lett; 2014 Mar; 36(3):567-73. PubMed ID: 24158673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acetyl glucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanesis.
    Chen JK; Shen CR; Yeh CH; Fang BS; Huang TL; Liu CL
    Int J Mol Sci; 2011 Feb; 12(2):1187-95. PubMed ID: 21541052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates.
    Cardozo FA; Gonzalez JM; Feitosa VA; Pessoa A; Rivera ING
    World J Microbiol Biotechnol; 2017 Oct; 33(11):201. PubMed ID: 29080074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic properties of β-N-acetylglucosaminidases.
    Zhang R; Zhou J; Song Z; Huang Z
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):93-103. PubMed ID: 29143882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus.
    Andronopoulou E; Vorgias CE
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):694-702. PubMed ID: 15322771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.