BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26796086)

  • 1. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.
    Rao SS; Durga IK; Kang TS; Kim SK; Punnoose D; Gopi CV; Eswar Reddy A; Krishna TN; Kim HJ
    Dalton Trans; 2016 Feb; 45(8):3450-63. PubMed ID: 26796086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells.
    Kim HJ; Myung-Sik L; Gopi CV; Venkata-Haritha M; Rao SS; Kim SK
    Dalton Trans; 2015 Jul; 44(25):11340-51. PubMed ID: 26011676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition.
    Thulasi-Varma CV; Rao SS; Kumar CS; Gopi CV; Durga IK; Kim SK; Punnoose D; Kim HJ
    Dalton Trans; 2015 Nov; 44(44):19330-43. PubMed ID: 26497705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells.
    Muthalif MPA; Choe Y
    J Colloid Interface Sci; 2021 Aug; 595():15-24. PubMed ID: 33813220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Dalton Trans; 2015 Jan; 44(2):630-8. PubMed ID: 25381887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Cu vacancy on knit coir mat structured CuS as counter electrode for quantum dot sensitized solar cells.
    Savariraj AD; Viswanathan KK; Prabakar K
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19702-9. PubMed ID: 25341851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Transition Metal Sulfides as Counter Electrodes for Dye-Sensitized and Quantum Dot-Sensitized Solar Cells.
    Kharboot LH; Fadil NA; Bakar TAA; Najib ASM; Nordin NH; Ghazali H
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-treatment-induced development of the crystalline structure and chemical stoichiometry of a Cu
    Deng J; Zhang P; Li L; Gou Y; Fang J; Lei Y; Song X; Yang Z
    J Colloid Interface Sci; 2020 Nov; 579():805-814. PubMed ID: 32673857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells.
    Bajpai R; Roy S; Kumar P; Bajpai P; Kulshrestha N; Rafiee J; Koratkar N; Misra DS
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3884-9. PubMed ID: 21877742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells.
    Faber MS; Park K; Cabán-Acevedo M; Santra PK; Jin S
    J Phys Chem Lett; 2013 Jun; 4(11):1843-9. PubMed ID: 26283119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu(1.8)Se and PbSe.
    Choi HM; Ji IA; Bang JH
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2335-43. PubMed ID: 24490774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimony tin oxide/lead selenide composite as efficient counter electrode material for quantum dot-sensitized solar cells.
    Jin BB; Huang HS; Kong SY; Zhang GQ; Yang B; Jiang CX; Zhou Y; Wang DJ; Zeng JH
    J Colloid Interface Sci; 2021 Sep; 598():492-499. PubMed ID: 33951547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells.
    Suriyawong N; Aragaw B; Shi JB; Lee MW
    J Colloid Interface Sci; 2016 Jul; 473():60-5. PubMed ID: 27054767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode.
    Yue G; Ma X; Zhang W; Li F; Wu J; Li G
    Nanoscale Res Lett; 2015; 10():1. PubMed ID: 25977644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube aerogel-CoS
    Liu T; Mai X; Chen H; Ren J; Liu Z; Li Y; Gao L; Wang N; Zhang J; He H; Guo Z
    Nanoscale; 2018 Mar; 10(9):4194-4201. PubMed ID: 29446418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite films of metal doped CoS/carbon allotropes; efficient electrocatalyst counter electrodes for high performance quantum dot-sensitized solar cells.
    Khalili SS; Dehghani H; Afrooz M
    J Colloid Interface Sci; 2017 May; 493():32-41. PubMed ID: 28088119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells.
    Wei YH; Tsai MC; Ma CC; Wu HC; Tseng FG; Tsai CH; Hsieh CK
    Nanoscale Res Lett; 2015 Dec; 10(1):467. PubMed ID: 26625891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells.
    Xu Z; Li T; Zhang F; Hong X; Xie S; Ye M; Guo W; Liu X
    Nanoscale; 2017 Mar; 9(11):3826-3833. PubMed ID: 28197585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.