These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 26796302)
21. Discovery of highly selective 7-chloroquinoline-thiohydantoins with potent antimalarial activity. Raj R; Mehra V; Gut J; Rosenthal PJ; Wicht KJ; Egan TJ; Hopper M; Wrischnik LA; Land KM; Kumar V Eur J Med Chem; 2014 Sep; 84():425-32. PubMed ID: 25038484 [TBL] [Abstract][Full Text] [Related]
22. An Overview of Available Antimalarials: Discovery, Mode of Action and Drug Resistance. Tang YQ; Ye Q; Huang H; Zheng WY Curr Mol Med; 2020; 20(8):583-592. PubMed ID: 32031068 [TBL] [Abstract][Full Text] [Related]
23. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304 [TBL] [Abstract][Full Text] [Related]
24. The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum. Le Bras J; Durand R Fundam Clin Pharmacol; 2003 Apr; 17(2):147-53. PubMed ID: 12667224 [TBL] [Abstract][Full Text] [Related]
25. The state of the art in anti-malarial drug discovery and development. Burrows JN; Chibale K; Wells TN Curr Top Med Chem; 2011; 11(10):1226-54. PubMed ID: 21401508 [TBL] [Abstract][Full Text] [Related]
26. Role of Trifluoromethyl Substitution in Design of Antimalarial Quinolones: a Comprehensive Review. Romero AH Top Curr Chem (Cham); 2019 Mar; 377(2):9. PubMed ID: 30835005 [TBL] [Abstract][Full Text] [Related]
27. Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio. Chaparro MJ; Calderón F; Castañeda P; Fernández-Alvaro E; Gabarró R; Gamo FJ; Gómez-Lorenzo MG; Martín J; Fernández E ACS Infect Dis; 2018 Apr; 4(4):568-576. PubMed ID: 29320160 [TBL] [Abstract][Full Text] [Related]
28. New Molecular Targets and Strategies for Antimalarial Discovery. Aguiar AC; de Sousa LRF; Garcia CRS; Oliva G; Guido RVC Curr Med Chem; 2019; 26(23):4380-4402. PubMed ID: 28875841 [TBL] [Abstract][Full Text] [Related]
29. Aminonaphthoquinones--a novel class of compounds with potent antimalarial activity against Plasmodium falciparum. Kapadia GJ; Azuine MA; Balasubramanian V; Sridhar R Pharmacol Res; 2001 Apr; 43(4):363-7. PubMed ID: 11352541 [TBL] [Abstract][Full Text] [Related]
30. Hits, leads and drugs against malaria through diversity-oriented synthesis. Dandapani S; Comer E; Duvall JR; Munoz B Future Med Chem; 2012 Dec; 4(18):2279-94. PubMed ID: 23234551 [TBL] [Abstract][Full Text] [Related]
31. Ferrocene-based antimalarials. Roux C; Biot C Future Med Chem; 2012 Apr; 4(6):783-97. PubMed ID: 22530641 [TBL] [Abstract][Full Text] [Related]
32. Acridine-Based Antimalarials-From the Very First Synthetic Antimalarial to Recent Developments. Fonte M; Tassi N; Gomes P; Teixeira C Molecules; 2021 Jan; 26(3):. PubMed ID: 33498868 [TBL] [Abstract][Full Text] [Related]
33. From hybrid compounds to targeted drug delivery in antimalarial therapy. Oliveira R; Miranda D; Magalhães J; Capela R; Perry MJ; O'Neill PM; Moreira R; Lopes F Bioorg Med Chem; 2015 Aug; 23(16):5120-30. PubMed ID: 25913864 [TBL] [Abstract][Full Text] [Related]
34. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. Rudrapal M; Chetia D Drug Des Devel Ther; 2016; 10():3575-3590. PubMed ID: 27843298 [TBL] [Abstract][Full Text] [Related]
35. Molecular and biological aspects of antimalarial resistance in Plasmodium falciparum and Plasmodium vivax. Bustamante C; Batista CN; Zalis M Curr Drug Targets; 2009 Mar; 10(3):279-90. PubMed ID: 19275564 [TBL] [Abstract][Full Text] [Related]
36. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Soares RR; da Silva JM; Carlos BC; da Fonseca CC; de Souza LS; Lopes FV; de Paula Dias RM; Moreira PO; Abramo C; Viana GH; de Pila Varotti F; da Silva AD; Scopel KK Bioorg Med Chem Lett; 2015 Jun; 25(11):2308-13. PubMed ID: 25920564 [TBL] [Abstract][Full Text] [Related]
37. Targeting Plasmodium Metabolism to Improve Antimalarial Drug Design. Avitia-Domínguez C; Sierra-Campos E; Betancourt-Conde I; Aguirre-Raudry M; Vázquez-Raygoza A; Luevano-De la Cruz A; Favela-Candia A; Sarabia-Sanchez M; Ríos-Soto L; Méndez-Hernández E; Cisneros-Martínez J; Palacio-Gastélum MG; Valdez-Solana M; Hernández-Rivera J; De Lira-Sánchez J; Campos-Almazán M; Téllez-Valencia A Curr Protein Pept Sci; 2016; 17(3):260-74. PubMed ID: 26983887 [TBL] [Abstract][Full Text] [Related]
38. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Chen W; Huang Z; Wang W; Mao F; Guan L; Tang Y; Jiang H; Li J; Huang J; Jiang L; Zhu J Bioorg Med Chem; 2017 Dec; 25(24):6467-6478. PubMed ID: 29111368 [TBL] [Abstract][Full Text] [Related]
39. Recent developments in the synthesis of hybrid antimalarial drug discovery. Prasad Raiguru B; Panda J; Mohapatra S; Nayak S Bioorg Chem; 2023 Oct; 139():106706. PubMed ID: 37406519 [TBL] [Abstract][Full Text] [Related]