These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 26796516)
1. Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield. Choe E; Drnevich J; Williams MM PLoS One; 2016; 11(1):e0147418. PubMed ID: 26796516 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional analysis of sweet corn hybrids in response to crowding stress. Choe E; Ko Y; Williams MM PLoS One; 2021; 16(6):e0253190. PubMed ID: 34138910 [TBL] [Abstract][Full Text] [Related]
3. Optimum plant density for crowding stress tolerant processing sweet corn. Dhaliwal DS; Williams MM PLoS One; 2019; 14(9):e0223107. PubMed ID: 31557241 [TBL] [Abstract][Full Text] [Related]
4. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress. He X; Ma H; Zhao X; Nie S; Li Y; Zhang Z; Shen Y; Chen Q; Lu Y; Lan H; Zhou S; Gao S; Pan G; Lin H PLoS One; 2016; 11(3):e0151697. PubMed ID: 26990640 [TBL] [Abstract][Full Text] [Related]
5. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize. Song Y; Zhang Z; Tan X; Jiang Y; Gao J; Lin L; Wang Z; Ren J; Wang X; Qin L; Cheng W; Qi J; Kuai B Sci Rep; 2016 Jul; 6():29843. PubMed ID: 27435114 [TBL] [Abstract][Full Text] [Related]
6. Historical Trends in Sweet Corn Plant Density Tolerance Using Era Hybrids (1930-2010s). Dhaliwal DS; Ainsworth EA; Williams MM Front Plant Sci; 2021; 12():707852. PubMed ID: 34630457 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteomic analysis reveals that the Heterosis of two maize hybrids is related to enhancement of stress response and photosynthesis respectively. Wang D; Mu Y; Hu X; Ma B; Wang Z; Zhu L; Xu J; Huang C; Pan Y BMC Plant Biol; 2021 Jan; 21(1):34. PubMed ID: 33422018 [TBL] [Abstract][Full Text] [Related]
8. Gene co-expression network analysis to identify critical modules and candidate genes of drought-resistance in wheat. Lv L; Zhang W; Sun L; Zhao A; Zhang Y; Wang L; Liu Y; Li Z; Li H; Chen X PLoS One; 2020; 15(8):e0236186. PubMed ID: 32866164 [TBL] [Abstract][Full Text] [Related]
9. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]
10. Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress. Gupta S; Gupta V; Singh V; Varadwaj PK Genes Genomics; 2018 Sep; 40(9):973-990. PubMed ID: 30155715 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. Shi J; Yan B; Lou X; Ma H; Ruan S BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503 [TBL] [Abstract][Full Text] [Related]
12. Expression profile analysis of maize in response to Setosphaeria turcica. Shi F; Zhang Y; Wang K; Meng Q; Liu X; Ma L; Li Y; Liu J; Ma L Gene; 2018 Jun; 659():100-108. PubMed ID: 29548860 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional analyses of natural leaf senescence in maize. Zhang WY; Xu YC; Li WL; Yang L; Yue X; Zhang XS; Zhao XY PLoS One; 2014; 9(12):e115617. PubMed ID: 25532107 [TBL] [Abstract][Full Text] [Related]
14. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108 [TBL] [Abstract][Full Text] [Related]
15. Physiological and Molecular Characteristics of Southern Leaf Blight Resistance in Sweet Corn Inbred Lines. Xiong C; Mo H; Fan J; Ren W; Pei H; Zhang Y; Ma Z; Wang W; Huang J Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142144 [TBL] [Abstract][Full Text] [Related]
17. Comparative Evaluation on Vitamin E and Carotenoid Accumulation in Sweet Corn ( Xiang N; Li C; Li G; Yu Y; Hu J; Guo X J Agric Food Chem; 2019 Sep; 67(35):9772-9781. PubMed ID: 31398019 [TBL] [Abstract][Full Text] [Related]
18. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Shi J; Gao H; Wang H; Lafitte HR; Archibald RL; Yang M; Hakimi SM; Mo H; Habben JE Plant Biotechnol J; 2017 Feb; 15(2):207-216. PubMed ID: 27442592 [TBL] [Abstract][Full Text] [Related]
19. Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. Zhang Q; Liu H; Wu X; Wang W BMC Plant Biol; 2020 Jul; 20(1):315. PubMed ID: 32620139 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]