BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26796587)

  • 1. Photochemical transformation of five novel brominated flame retardants: Kinetics and photoproducts.
    Zhang YN; Chen J; Xie Q; Li Y; Zhou C
    Chemosphere; 2016 May; 150():453-460. PubMed ID: 26796587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into phototransformation mechanism and toxicity evolution of novel and legacy brominated flame retardants in water: A comparative analysis.
    Cao Y; Gao Y; Hu X; Zeng Y; Luo X; Li G; An T; Mai B
    Water Res; 2022 Mar; 211():118041. PubMed ID: 35030361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototransformation of 2,3-Dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in Natural Waters: Important Roles of Dissolved Organic Matter and Chloride Ion.
    Zhang YN; Wang J; Chen J; Zhou C; Xie Q
    Environ Sci Technol; 2018 Sep; 52(18):10490-10499. PubMed ID: 30141914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence and mass balance of emerging brominated flame retardants in a municipal wastewater treatment plant.
    Wang H; Liu S; Zhang C; Wan Y; Chang H
    Water Res; 2020 Oct; 185():116298. PubMed ID: 32818736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodegradation of the novel brominated flame retardant 2,4,6-Tris-(2,4,6-tribromophenoxy)-1,3,5-triazine in solvent system: Kinetics, photolysis products and pathway.
    Lörchner D; Kraus W; Köppen R
    Chemosphere; 2019 Aug; 229():77-85. PubMed ID: 31075705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tribromophenoxy flame retardants in the Great Lakes atmosphere.
    Ma Y; Venier M; Hites RA
    Environ Sci Technol; 2012 Dec; 46(24):13112-7. PubMed ID: 23181569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levels of non-polybrominated diphenyl ether brominated flame retardants in residential house dust samples and fire station dust samples in California.
    Brown FR; Whitehead TP; Park JS; Metayer C; Petreas MX
    Environ Res; 2014 Nov; 135():9-14. PubMed ID: 25261858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation of novel brominated flame retardants in crucian carp (Carassius auratus): Implications for electronic waste recycling area monitoring.
    Wang Z; Jia H; Jiang Y; Cui S; Li YF
    Environ Res; 2023 Dec; 239(Pt 2):117412. PubMed ID: 37839535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants.
    Xiong P; Yan X; Zhu Q; Qu G; Shi J; Liao C; Jiang G
    Environ Sci Technol; 2019 Dec; 53(23):13551-13569. PubMed ID: 31682424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles.
    McGrath TJ; Ball AS; Clarke BO
    Environ Pollut; 2017 Nov; 230():741-757. PubMed ID: 28732337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The analysis of halogenated flame retardants by GC-HRMS in environmental samples.
    Kolic TM; Shen L; Macpherson K; Fayez L; Gobran T; Helm PA; Marvin CH; Arsenault G; Reiner EJ
    J Chromatogr Sci; 2009 Jan; 47(1):83-91. PubMed ID: 19161661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brominated flame retardants (BFRs) in marine food webs from Bohai Sea, China.
    Liu Y; Cui S; Ma Y; Jiang Q; Zhao X; Cheng Q; Guo L; Jia H; Lin L
    Sci Total Environ; 2021 Jun; 772():145036. PubMed ID: 33578148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel brominated flame retardants and dechlorane plus in Greenland air and biota.
    Vorkamp K; Bossi R; Riget FF; Skov H; Sonne C; Dietz R
    Environ Pollut; 2015 Jan; 196():284-91. PubMed ID: 25463724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish.
    Pradhan A; Asnake S; Kharlyngdoh JB; Modig C; Olsson PE
    Chem Biol Interact; 2015 May; 233():35-45. PubMed ID: 25818047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic biotransformation of two novel brominated flame retardants: Kinetics, isotope fractionation and reaction mechanisms.
    Huang C; Zeng Y; Hu K; Jiang Y; Zhang Y; Lu Q; Liu YE; Gao S; Wang S; Luo X; Mai B
    Water Res; 2023 Sep; 243():120360. PubMed ID: 37481998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) can contribute to high levels of 2,4,6-tribromophenol (2,4,6-TBP) in humans.
    Zheng G; Melo L; Chakraborty R; Klaunig JE; Salamova A
    Environ Int; 2022 Jan; 158():106943. PubMed ID: 34717176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of alternative flame retardants in indoor dust from New Zealand: indoor sources and human exposure assessment.
    Ali N; Dirtu AC; Van den Eede N; Goosey E; Harrad S; Neels H; 't Mannetje A; Coakley J; Douwes J; Covaci A
    Chemosphere; 2012 Sep; 88(11):1276-82. PubMed ID: 22551874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism in the toxicokinetics and fate of brominated flame retardants--a review.
    Hakk H; Letcher RJ
    Environ Int; 2003 Sep; 29(6):801-28. PubMed ID: 12850098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione: kinetic studies and phototransformation products.
    Lörchner D; Kroh LW; Köppen R
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):15838-15846. PubMed ID: 30953324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour.
    Covaci A; Harrad S; Abdallah MA; Ali N; Law RJ; Herzke D; de Wit CA
    Environ Int; 2011 Feb; 37(2):532-56. PubMed ID: 21168217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.