BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 26797424)

  • 61. Raman Spectroscopy for the Time since Deposition Estimation of a Menstrual Bloodstain.
    Weber A; Wójtowicz A; Wietecha-Posłuszny R; Lednev IK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894054
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [The effect of textile technical parameters of a blood-stained fabric on its absorption of blood].
    Messler H; Berghaus G; Dotzauer G
    Arch Kriminol; 1982; 169(3-4):99-113. PubMed ID: 7082127
    [No Abstract]   [Full Text] [Related]  

  • 63. Influence of the relative humidity on the blood drip stain formation on jeans fabrics.
    Benabdelhalim H; Brutin D
    Forensic Sci Int; 2023 Sep; 350():111808. PubMed ID: 37604025
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Application of multi-resolution 3D techniques in crime scene documentation with bloodstain pattern analysis.
    Hołowko E; Januszkiewicz K; Bolewicki P; Sitnik R; Michoński J
    Forensic Sci Int; 2016 Oct; 267():218-227. PubMed ID: 27649099
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Surface coatings including fingerprint residues can significantly alter the size and shape of bloodstains.
    Shiri S; Martin KF; Bird JC
    Forensic Sci Int; 2019 Feb; 295():189-198. PubMed ID: 30622046
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Impact height and wall distance in bloodstain pattern analysis--what patterns of round bloodstains can tell us.
    Kettner M; Schmidt A; Windgassen M; Schmidt P; Wagner C; Ramsthaler F
    Int J Legal Med; 2015 Jan; 129(1):133-40. PubMed ID: 25212126
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The ring phenomenon of diluted blood droplets.
    Ramsthaler F; Schlote J; Wagner C; Fiscina J; Kettner M
    Int J Legal Med; 2016 May; 130(3):731-6. PubMed ID: 26718842
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A robust background correction algorithm for forensic bloodstain imaging using mean-based contrast adjustment.
    Lee WC; Khoo BE; Abdullah AFL
    Sci Justice; 2016 May; 56(3):201-209. PubMed ID: 27162018
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Modification of DNA typing of blood stains by textile stain carriers].
    Scheithauer R; Weisser HJ
    Beitr Gerichtl Med; 1991; 49():281-4. PubMed ID: 1811509
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The morphology of fecal and regurgitation artifacts deposited by the blow fly Lucilia cuprina fed a diet of human blood.
    Durdle A; van Oorschot RA; Mitchell RJ
    J Forensic Sci; 2013 Jul; 58(4):897-903. PubMed ID: 23551179
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Soil transference patterns on bras: Image processing and laboratory dragging experiments.
    Murray KR; Fitzpatrick RW; Bottrill RS; Berry R; Kobus H
    Forensic Sci Int; 2016 Jan; 258():88-100. PubMed ID: 26679633
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deducing drop size and impact velocity from circular bloodstains.
    Hulse-Smith L; Mehdizadeh NZ; Chandra S
    J Forensic Sci; 2005 Jan; 50(1):54-63. PubMed ID: 15830997
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Automatic Classification of Bloodstain Patterns Caused by Gunshot and Blunt Impact at Various Distances.
    Liu Y; Attinger D; De Brabanter K
    J Forensic Sci; 2020 May; 65(3):729-743. PubMed ID: 31944296
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Statistical evaluation of alternative light sources for bloodstain photography.
    Lee WC; Khoo BE; Bin Abdullah AF; Abdul Aziz ZB
    J Forensic Sci; 2013 May; 58(3):658-63. PubMed ID: 23488634
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation.
    Wang Z; Zhang P; Liu H; Zhao Z; Xiong L; He W; Kwok RTK; Lam JWY; Ye R; Tang BZ
    ACS Appl Mater Interfaces; 2019 May; 11(19):17306-17312. PubMed ID: 31020832
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A quantitative method for determining a representative detection limit of the forensic luminol test for latent bloodstains.
    Cassidy BM; Lu Z; Martin JP; Tazik SK; Kellogg KW; DeJong SA; Belliveau EO; Kilgore KE; Ervin SM; Meece-Rayle M; Abraham AM; Myrick ML; Morgan SL
    Forensic Sci Int; 2017 Sep; 278():396-403. PubMed ID: 28837893
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Age estimation of bloodstains using smartphones and digital image analysis.
    Thanakiatkrai P; Yaodam A; Kitpipit T
    Forensic Sci Int; 2013 Dec; 233(1-3):288-97. PubMed ID: 24314532
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: A forensic analysis.
    Cavalcanti DR; Silva LP
    Forensic Sci Int; 2019 Aug; 301():254-262. PubMed ID: 31181409
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optical profilometry for forensic bloodstain imaging.
    Vale B; Orr A; Elliott C; Stotesbury T
    Microsc Res Tech; 2023 Oct; 86(10):1401-1408. PubMed ID: 37133225
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Degrees of contrast: Detection of latent bloodstains on fabric using an alternate light source (ALS) and the effects of washing.
    James ME
    J Forensic Sci; 2021 May; 66(3):1024-1032. PubMed ID: 33284461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.