These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 26797528)
1. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO. Lin LC; Chang HT; Chang CH; Chao W; Smith MC; Chang CH; Min Lin J; Takahashi K Phys Chem Chem Phys; 2016 Feb; 18(6):4557-68. PubMed ID: 26797528 [TBL] [Abstract][Full Text] [Related]
2. Temperature-Dependent Rate Coefficients for the Reaction of CH Smith MC; Chao W; Kumar M; Francisco JS; Takahashi K; Lin JJ J Phys Chem A; 2017 Feb; 121(5):938-945. PubMed ID: 28067517 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Newland MJ; Rickard AR; Alam MS; Vereecken L; Muñoz A; Ródenas M; Bloss WJ Phys Chem Chem Phys; 2015 Feb; 17(6):4076-88. PubMed ID: 25562069 [TBL] [Abstract][Full Text] [Related]
4. Temperature dependence of the reaction of anti-CH Lin LC; Chao W; Chang CH; Takahashi K; Lin JJ Phys Chem Chem Phys; 2016 Oct; 18(40):28189-28197. PubMed ID: 27711535 [TBL] [Abstract][Full Text] [Related]
5. How does substitution affect the unimolecular reaction rates of Criegee intermediates? Yin C; Takahashi K Phys Chem Chem Phys; 2017 May; 19(19):12075-12084. PubMed ID: 28443920 [TBL] [Abstract][Full Text] [Related]
6. Effects of water vapor on the reaction of CH Chao W; Yin C; Takahashi K; Lin JJ Phys Chem Chem Phys; 2019 Oct; 21(40):22589-22597. PubMed ID: 31589227 [TBL] [Abstract][Full Text] [Related]
7. Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH2OO Reaction with Water Dimer. Smith MC; Chang CH; Chao W; Lin LC; Takahashi K; Boering KA; Lin JJ J Phys Chem Lett; 2015 Jul; 6(14):2708-13. PubMed ID: 26266852 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Berndt T; Kaethner R; Voigtländer J; Stratmann F; Pfeifle M; Reichle P; Sipilä M; Kulmala M; Olzmann M Phys Chem Chem Phys; 2015 Aug; 17(30):19862-73. PubMed ID: 26159709 [TBL] [Abstract][Full Text] [Related]
9. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water. Long B; Bao JL; Truhlar DG J Am Chem Soc; 2016 Nov; 138(43):14409-14422. PubMed ID: 27682870 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect. Wu YJ; Takahashi K; Lin JJ J Phys Chem A; 2023 Oct; 127(39):8059-8072. PubMed ID: 37734061 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of CH Zhou X; Chen Y; Liu Y; Li X; Dong W; Yang X Phys Chem Chem Phys; 2021 Jun; 23(23):13276-13283. PubMed ID: 34095924 [TBL] [Abstract][Full Text] [Related]
12. Quantitative kinetics for the atmospheric reactions of Criegee intermediates with acetonitrile. Zhang YQ; Xia Y; Long B Phys Chem Chem Phys; 2022 Oct; 24(40):24759-24766. PubMed ID: 36200683 [TBL] [Abstract][Full Text] [Related]
13. Temperature-Dependent Rate Coefficient for the Reaction of CH Li YL; Lin YH; Yin C; Takahashi K; Chiang CY; Chang YP; Lin JJ J Phys Chem A; 2019 May; 123(19):4096-4103. PubMed ID: 31017782 [TBL] [Abstract][Full Text] [Related]
15. Identification and Self-Reaction Kinetics of Criegee Intermediates syn-CH Luo PL; Endo Y; Lee YP J Phys Chem Lett; 2018 Aug; 9(15):4391-4395. PubMed ID: 30024766 [TBL] [Abstract][Full Text] [Related]
16. Reaction Kinetics of CH Jiang H; Liu Y; Xiao C; Yang X; Dong W J Phys Chem A; 2024 Jun; 128(25):4956-4965. PubMed ID: 38868987 [TBL] [Abstract][Full Text] [Related]
17. Temperature and isotope effects in the reaction of CH Chao W; Lin YH; Yin C; Lin WH; Takahashi K; Lin JJ Phys Chem Chem Phys; 2019 Jul; 21(25):13633-13640. PubMed ID: 31187818 [TBL] [Abstract][Full Text] [Related]
18. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601 [TBL] [Abstract][Full Text] [Related]
19. Reactivity of Criegee Intermediates toward Carbon Dioxide. Lin YH; Takahashi K; Lin JJ J Phys Chem Lett; 2018 Jan; 9(1):184-188. PubMed ID: 29254332 [TBL] [Abstract][Full Text] [Related]
20. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Taatjes CA; Welz O; Eskola AJ; Savee JD; Scheer AM; Shallcross DE; Rotavera B; Lee EP; Dyke JM; Mok DK; Osborn DL; Percival CJ Science; 2013 Apr; 340(6129):177-80. PubMed ID: 23580524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]