These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26797637)

  • 1. Exploiting tRNAs to Boost Virulence.
    Albers S; Czech A
    Life (Basel); 2016 Jan; 6(1):. PubMed ID: 26797637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging Roles of tRNAs in RNA Virus Infections.
    Nunes A; Ribeiro DR; Marques M; Santos MAS; Ribeiro D; Soares AR
    Trends Biochem Sci; 2020 Sep; 45(9):794-805. PubMed ID: 32505636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications.
    Baldridge KC; Jora M; Maranhao AC; Quick MM; Addepalli B; Brodbelt JS; Ellington AD; Limbach PA; Contreras LM
    ACS Synth Biol; 2018 May; 7(5):1315-1327. PubMed ID: 29694026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actions of the anticodon arm in translation on the phenotypes of RNA mutants.
    Yarus M; Cline SW; Wier P; Breeden L; Thompson RC
    J Mol Biol; 1986 Nov; 192(2):235-55. PubMed ID: 2435916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium.
    Alamos P; Tello M; Bustamante P; Gutiérrez F; Shmaryahu A; Maldonado J; Levicán G; Orellana O
    RNA Biol; 2018; 15(4-5):518-527. PubMed ID: 28708455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling translation via modulation of tRNA levels.
    Wilusz JE
    Wiley Interdiscip Rev RNA; 2015; 6(4):453-70. PubMed ID: 25919480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV-2 has the advantage of competing the iMet-tRNAs with human hosts to allow efficient translation.
    Wang Y; Gai Y; Li Y; Li C; Li Z; Wang X
    Mol Genet Genomics; 2021 Jan; 296(1):113-118. PubMed ID: 33040198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repertoires of tRNAs: The Couplers of Genomics and Proteomics.
    Rak R; Dahan O; Pilpel Y
    Annu Rev Cell Dev Biol; 2018 Oct; 34():239-264. PubMed ID: 30125138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation.
    Pavon-Eternod M; David A; Dittmar K; Berglund P; Pan T; Bennink JR; Yewdell JW
    Nucleic Acids Res; 2013 Feb; 41(3):1914-21. PubMed ID: 23254333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of host translational machinery drives tRNA acquisition in viruses.
    Yang JY; Fang W; Miranda-Sanchez F; Brown JM; Kauffman KM; Acevero CM; Bartel DP; Polz MF; Kelly L
    Cell Syst; 2021 Aug; 12(8):771-779.e5. PubMed ID: 34143976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viral tRNAs and tRNA-like structures.
    Dreher TW
    Wiley Interdiscip Rev RNA; 2010; 1(3):402-14. PubMed ID: 21956939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codon usage, amino acid usage, transfer RNA and amino-acyl-tRNA synthetases in Mimiviruses.
    Colson P; Fournous G; Diene SM; Raoult D
    Intervirology; 2013; 56(6):364-75. PubMed ID: 24157883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoacylation of tRNAs encoded by Chlorella virus CVK2.
    Nishida K; Kawasaki T; Fujie M; Usami S; Yamada T
    Virology; 1999 Oct; 263(1):220-9. PubMed ID: 10544096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of serine and leucine tRNAs in an asporogenic yeast Candida cylindracea and evolutionary implications of genes for tRNA(Ser)CAG responsible for translation of a non-universal genetic code.
    Suzuki T; Ueda T; Yokogawa T; Nishikawa K; Watanabe K
    Nucleic Acids Res; 1994 Jan; 22(2):115-23. PubMed ID: 8121794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatographic analyses of isoaccepting tRNAs from avian tumor viruses.
    Taylor MW; Wang S; Kothari RM; Hung PP
    J Virol; 1974 Nov; 14(5):1092-8. PubMed ID: 4372388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Transfer" of power: The intersection of DNA virus infection and tRNA biology.
    Dremel SE; Jimenez AR; Tucker JM
    Semin Cell Dev Biol; 2023 Sep; 146():31-39. PubMed ID: 36682929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causes for the intriguing presence of tRNAs in phages.
    Bailly-Bechet M; Vergassola M; Rocha E
    Genome Res; 2007 Oct; 17(10):1486-95. PubMed ID: 17785533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites.
    Fahlman RP; Dale T; Uhlenbeck OC
    Mol Cell; 2004 Dec; 16(5):799-805. PubMed ID: 15574334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human immunodeficiency virus type 1 can use different tRNAs as primers for reverse transcription but selectively maintains a primer binding site complementary to tRNA(3Lys).
    Wakefield JK; Wolf AG; Morrow CD
    J Virol; 1995 Oct; 69(10):6021-9. PubMed ID: 7545240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Analysis Reveals Ancestral Lack of Seventeen Different tRNAs and Clade-Specific Loss of tRNA-CNNs in Archaea.
    Wu Y; Wu P; Wang B; Shao ZQ
    Front Microbiol; 2018; 9():1245. PubMed ID: 29930548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.