BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26797715)

  • 1. Highly efficient synthesis of quinoxaline derivatives from 1,2-benzenediamine and α-aminoxylated 1,3-dicarbonyl compounds.
    Yan J; Xu Y; Zhuang F; Tian J; Zhang G
    Mol Divers; 2016 May; 20(2):567-73. PubMed ID: 26797715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Pot Regiospecific Synthesis of Quinoxalines via a CH2-Extrusion Reaction.
    Shen J; Wang X; Lin X; Yang Z; Cheng G; Cui X
    Org Lett; 2016 Mar; 18(6):1378-81. PubMed ID: 26925522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green and efficient synthesis of quinoxaline derivatives via ceric ammonium nitrate promoted and in situ aerobic oxidation of alpha-hydroxy ketones and alpha-keto oximes in aqueous media.
    Shaabani A; Maleki A
    Chem Pharm Bull (Tokyo); 2008 Jan; 56(1):79-81. PubMed ID: 18175980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis.
    Rajabi F; Alves D; Luque R
    Molecules; 2015 Nov; 20(11):20709-18. PubMed ID: 26610446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synthesis and optical properties of fluorescent quinoxalines and of electrospun fibers containing fluorescent quinoxaline.
    Jang CK; Jaung JY
    J Nanosci Nanotechnol; 2011 Jan; 11(1):494-8. PubMed ID: 21446483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis of substituted naphthalenes from 1,3-dicarbonyl compounds and 1,2-bis(halomethyl)benzenes including a novel rearrangement aromatization of benzo[c]oxepine.
    Wang JG; Wang M; Xiang JC; Zhu YP; Xue WJ; Wu AX
    Org Lett; 2012 Dec; 14(23):6060-3. PubMed ID: 23186000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of pyrrolo[1,2-a]quinoxaline derivatives via iron-promoted aryl nitro reduction and aerobic oxidation of alcohols.
    Pereira Mde F; Thiéry V
    Org Lett; 2012 Sep; 14(18):4754-7. PubMed ID: 22971137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Pot Synthesis of Pyrrolo[1,2-a]quinoxaline Derivatives via a Copper-Catalyzed Aerobic Oxidative Domino Reaction.
    Liu H; Duan T; Zhang Z; Xie C; Ma C
    Org Lett; 2015 Jun; 17(12):2932-5. PubMed ID: 26052923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A green and efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using heteropolyanion-based ionic liquids: as a recyclable solid catalyst.
    Vahdat SM; Baghery S
    Comb Chem High Throughput Screen; 2013 Sep; 16(8):618-27. PubMed ID: 23547570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis.
    He Z; Bae M; Wu J; Jamison TF
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14451-5. PubMed ID: 25347967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the structure of (E)-2-(2-benzylidenehydrazinylidene)quinoxaline with those of its chloro- and bromobenzylidene analogues.
    Gomes LR; Low JN; Rodrigues AS; Wardell JL; de Souza MV; Noguiera TC; Pinheiro AC
    Acta Crystallogr C; 2013 Aug; 69(Pt 8):920-6. PubMed ID: 23907890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural vs. Synthetic Phosphate as Efficient Heterogeneous Compounds for Synthesis of Quinoxalines.
    Amini A; Fallah A; Sedaghat A; Gholami A; Cheng C; Gupta AR
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insight into medicinal chemistry of anticancer quinoxalines.
    Kaushal T; Srivastava G; Sharma A; Singh Negi A
    Bioorg Med Chem; 2019 Jan; 27(1):16-35. PubMed ID: 30502116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile three- and four-component procedure toward the synthesis of functionalized pyrano- and benzo[f]quinoxaline derivatives.
    Ghadari R; Hajishaabanha F; Aghaei M; Shaabani A; Ng SW
    Mol Divers; 2012 Aug; 16(3):453-61. PubMed ID: 22729844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica bonded S-sulfonic acid: a recyclable catalyst for the synthesis of quinoxalines at room temperature.
    Niknam K; Saberi D; Mohagheghnejad M
    Molecules; 2009 May; 14(5):1915-26. PubMed ID: 19471211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyridinylquinoxalines and pyridinylpyridopyrazines as lead compounds for novel p38 alpha mitogen-activated protein kinase inhibitors.
    Koch P; Jahns H; Schattel V; Goettert M; Laufer S
    J Med Chem; 2010 Feb; 53(3):1128-37. PubMed ID: 20078117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinoxaline: A Chemical Moiety with Spectrum of Interesting Biological Activities.
    Sharma A; Deep A; Marwaha MG; Marwaha RK
    Mini Rev Med Chem; 2022; 22(6):927-948. PubMed ID: 34579634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, leptospirocidal activity and QSAR analysis of novel quinoxaline derivatives.
    Puratchikody A; Natarajan R; Doble M; Iswarya SH; Vijayabharathi R
    Med Chem; 2013 Mar; 9(2):275-86. PubMed ID: 22779788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach for C-C, C-N, and C-O bond formation reactions: a facile synthesis of benzophenazine, quinoxaline, and phenoxazine derivatives via ring opening of benzoxepines.
    Raju BC; Prasad KV; Saidachary G; Sridhar B
    Org Lett; 2014 Jan; 16(2):420-3. PubMed ID: 24328679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinoxaline, its derivatives and applications: A State of the Art review.
    Pereira JA; Pessoa AM; Cordeiro MN; Fernandes R; Prudêncio C; Noronha JP; Vieira M
    Eur J Med Chem; 2015 Jun; 97():664-72. PubMed ID: 25011559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.