These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26797803)

  • 1. Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures.
    Guan H; Lin J; Qiao B; Yang X; Li L; Miao S; Liu J; Wang A; Wang X; Zhang T
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2820-4. PubMed ID: 26797803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic reactions on neutral Rh oxide clusters more efficient than on neutral Rh clusters.
    Yamada A; Miyajima K; Mafuné F
    Phys Chem Chem Phys; 2012 Mar; 14(12):4188-95. PubMed ID: 22354062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing the number of oxygen vacancies on TiO2 by doping with iron increases the activity of supported gold for CO oxidation.
    Carrettin S; Hao Y; Aguilar-Guerrero V; Gates BC; Trasobares S; Calvino JJ; Corma A
    Chemistry; 2007; 13(27):7771-9. PubMed ID: 17611949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature oxidation of carbon monoxide with gold(III) ions supported on titanium oxide.
    Grünert W; Großmann D; Noei H; Pohl MM; Sinev I; De Toni A; Wang Y; Muhler M
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3245-9. PubMed ID: 24554533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of CO on NO oxidation over platinum based catalysts for hybrid fast SCR process.
    Irfan MF; Goo JH; Kim SD; Hong SC
    Chemosphere; 2007 Jan; 66(1):54-9. PubMed ID: 16828142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid monitoring of the nature and interconversion of supported catalyst phases and of their influence upon performance: CO oxidation to CO2 by gamma-Al2O3 supported Rh catalysts.
    Newton MA; Dent AJ; Diaz-Moreno S; Fiddy SG; Jyoti B; Evans J
    Chemistry; 2006 Feb; 12(7):1975-85. PubMed ID: 16402395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoclusters in catalysis: a comparison of CS(2) catalyst poisoning of polyoxoanion- and tetrabutylammonium-stabilized 40 +/- 6 A Rh(0) nanoclusters to 5 Rh/Al(2)O(3), including an analysis of the literature related to the CS(2) to metal stoichiometry issue.
    Hornstein BJ; Aiken JD; Finke RG
    Inorg Chem; 2002 Mar; 41(6):1625-38. PubMed ID: 11896733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia.
    Hung CM
    J Hazard Mater; 2010 Aug; 180(1-3):561-5. PubMed ID: 20451319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized partial oxidation of acetic acid at the dual perimeter sites of the Au/TiO2 catalyst-formation of gold ketenylidene.
    Green IX; Tang W; Neurock M; Yates JT
    J Am Chem Soc; 2012 Aug; 134(33):13569-72. PubMed ID: 22871091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seedless polyol synthesis and CO oxidation activity of monodisperse (111)- and (100)-oriented rhodium nanocrystals in sub-10 nm sizes.
    Zhang Y; Grass ME; Huang W; Somorjai GA
    Langmuir; 2010 Nov; 26(21):16463-8. PubMed ID: 20443537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Au-Rh/TiO2 bimetallic nanocatalysts by CO and CH3CN adsorption: XPS, TEM and FTIR measurements.
    Kiss J; Németh R; Koós A; Raskó J
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3828-36. PubMed ID: 19504927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced catalytic activity for CO oxidation by the metal-oxide perimeter of TiO
    Lee SW; Song JT; Kim J; Oh J; Park JY
    Nanoscale; 2018 Feb; 10(8):3911-3917. PubMed ID: 29423473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation.
    Chen CS; Chen TC; Chen CC; Lai YT; You JH; Chou TM; Chen CH; Lee JF
    Langmuir; 2012 Jul; 28(26):9996-10006. PubMed ID: 22676402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of emerging catalytic activity of gold nano-clusters on rutile TiO2(110) in CO oxidation reaction.
    Mitsuhara K; Tagami M; Matsuda T; Visikovskiy A; Takizawa M; Kido Y
    J Chem Phys; 2012 Mar; 136(12):124303. PubMed ID: 22462853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The important role of hydroxyl on oxidation catalysis by gold nanoparticles.
    Ide MS; Davis RJ
    Acc Chem Res; 2014 Mar; 47(3):825-33. PubMed ID: 24261465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.