These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids. Jaiswal A; Egami T; Kelton KF; Schweizer KS; Zhang Y Phys Rev Lett; 2016 Nov; 117(20):205701. PubMed ID: 27886481 [TBL] [Abstract][Full Text] [Related]
3. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network. Galimzyanov BN; Doronina MA; Mokshin AV Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770134 [TBL] [Abstract][Full Text] [Related]
4. Single-particle dynamics near the glass transition of a metallic glass. Lü YJ; Wang WH Phys Rev E; 2016 Dec; 94(6-1):062611. PubMed ID: 28085459 [TBL] [Abstract][Full Text] [Related]
5. Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid. Lad KN; Jakse N; Pasturel A J Chem Phys; 2012 Mar; 136(10):104509. PubMed ID: 22423850 [TBL] [Abstract][Full Text] [Related]
6. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids. Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827 [TBL] [Abstract][Full Text] [Related]
7. Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Jiang J; Lu Z; Shen J; Wada T; Kato H; Chen M Nat Commun; 2021 Jun; 12(1):3843. PubMed ID: 34158476 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a simple monatomic ideal glass former: the thermodynamic glass transition from a stable liquid phase. Elenius M; Oppelstrup T; Dzugutov M J Chem Phys; 2010 Nov; 133(17):174502. PubMed ID: 21054046 [TBL] [Abstract][Full Text] [Related]
9. Size effect on dynamics and glass transition in metallic liquids and glasses. Li YZ; Sun YT; Lu Z; Li MZ; Bai HY; Wang WH J Chem Phys; 2017 Jun; 146(22):224502. PubMed ID: 29166072 [TBL] [Abstract][Full Text] [Related]
10. Revisiting the Stokes-Einstein relation for glass-forming melts. Cao QL; Wang PP; Huang DH Phys Chem Chem Phys; 2020 Jan; 22(4):2557-2565. PubMed ID: 31942907 [TBL] [Abstract][Full Text] [Related]
11. Overlap fluctuations in glass-forming liquids. Berthier L Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022313. PubMed ID: 24032838 [TBL] [Abstract][Full Text] [Related]
12. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Chen SH; Stanley HE Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22457-62. PubMed ID: 21148100 [TBL] [Abstract][Full Text] [Related]
13. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys. Yang MH; Li Y; Li JH; Liu BX Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279 [TBL] [Abstract][Full Text] [Related]
14. Structural evolution in the aging process of supercooled colloidal liquids. Kawasaki T; Tanaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062315. PubMed ID: 25019784 [TBL] [Abstract][Full Text] [Related]
15. Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni. Zhang H; Yang Y; Douglas JF J Chem Phys; 2015 Feb; 142(8):084704. PubMed ID: 25725748 [TBL] [Abstract][Full Text] [Related]
16. Approach to hyperuniformity in a metallic glass-forming material exhibiting a fragile to strong glass transition. Zhang H; Wang X; Zhang J; Yu HB; Douglas JF Eur Phys J E Soft Matter; 2023 Jun; 46(6):50. PubMed ID: 37380868 [TBL] [Abstract][Full Text] [Related]
17. Relationship between the potential energy landscape and the dynamic crossover in a water-like monatomic liquid with a liquid-liquid phase transition. Sun G; Xu L; Giovambattista N J Chem Phys; 2017 Jan; 146(1):014503. PubMed ID: 28063451 [TBL] [Abstract][Full Text] [Related]
18. Proposal for universality in the viscosity of metallic liquids. Blodgett ME; Egami T; Nussinov Z; Kelton KF Sci Rep; 2015 Sep; 5():13837. PubMed ID: 26350788 [TBL] [Abstract][Full Text] [Related]
19. Universal Scaling in the Temperature-Dependent Viscous Dynamics of Metallic Glasses. Zhang M; Chen Y; Dai LH J Phys Chem B; 2021 Apr; 125(13):3419-3425. PubMed ID: 33764771 [TBL] [Abstract][Full Text] [Related]
20. Pressure effects on structure and dynamics of metallic glass-forming liquid. Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]