These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26799017)

  • 1. Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor.
    Safari A; De Leon I; Mirhosseini M; Magaña-Loaiza OS; Boyd RW
    Phys Rev Lett; 2016 Jan; 116(1):013601. PubMed ID: 26799017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transverse drag of slow light in moving atomic vapor.
    Solomons Y; Banerjee C; Smartsev S; Friedman J; Eger D; Firstenberg O; Davidson N
    Opt Lett; 2020 Jul; 45(13):3431-3434. PubMed ID: 32630863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fresnel light drag in a coherently driven moving medium.
    Artoni M; Carusotto I; La Rocca GC; Bassani F
    Phys Rev Lett; 2001 Mar; 86(12):2549-52. PubMed ID: 11289977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotary photon drag enhanced by a slow-light medium.
    Franke-Arnold S; Gibson G; Boyd RW; Padgett MJ
    Science; 2011 Jul; 333(6038):65-7. PubMed ID: 21719672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow-light fourier transform interferometer.
    Shi Z; Boyd RW; Camacho RM; Vudyasetu PK; Howell JC
    Phys Rev Lett; 2007 Dec; 99(24):240801. PubMed ID: 18233433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drag reduction by Leidenfrost vapor layers.
    Vakarelski IU; Marston JO; Chan DY; Thoroddsen ST
    Phys Rev Lett; 2011 May; 106(21):214501. PubMed ID: 21699302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow diffusion of light in a cold atomic cloud.
    Labeyrie G; Vaujour E; Müller CA; Delande D; Miniatura C; Wilkowski D; Kaiser R
    Phys Rev Lett; 2003 Nov; 91(22):223904. PubMed ID: 14683240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision Doppler measurements with steep dispersion.
    Bortolozzo U; Residori S; Howell JC
    Opt Lett; 2013 Aug; 38(16):3107-10. PubMed ID: 24104661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large Fizeau's light-dragging effect in a moving electromagnetically induced transparent medium.
    Kuan PC; Huang C; Chan WS; Kosen S; Lan SY
    Nat Commun; 2016 Oct; 7():13030. PubMed ID: 27694938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow-flow measurements and fluid dynamics analysis using the Fresnel drag effect.
    de Carvalho RT; Blake J
    Appl Opt; 1994 Sep; 33(25):6073-7. PubMed ID: 20936023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of large group index enhancement in Doppler-broadened rubidium vapor.
    Wang BX; Liu CY; Han DJ
    Opt Express; 2015 Jul; 23(15):18792-801. PubMed ID: 26367544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipative flow and vortex shedding in the Painlevé boundary layer of a Bose-Einstein condensate.
    Aftalion A; Du Q; Pomeau Y
    Phys Rev Lett; 2003 Aug; 91(9):090407. PubMed ID: 14525168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fresnel drag in space-time-modulated metamaterials.
    Huidobro PA; Galiffi E; Guenneau S; Craster RV; Pendry JB
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24943-24948. PubMed ID: 31767741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of light dragging in a rubidium vapor cell.
    Strekalov D; Matsko AB; Yu N; Maleki L
    Phys Rev Lett; 2004 Jul; 93(2):023601. PubMed ID: 15323915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of mean path length invariance in light-scattering media.
    Savo R; Pierrat R; Najar U; Carminati R; Rotter S; Gigan S
    Science; 2017 Nov; 358(6364):765-768. PubMed ID: 29123064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Onset of wave drag due to generation of capillary-gravity waves by a moving object as a critical phenomenon.
    Burghelea T; Steinberg V
    Phys Rev Lett; 2001 Mar; 86(12):2557-60. PubMed ID: 11289979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow drag in two-dimensional granular media.
    Geng J; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011302. PubMed ID: 15697590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary-gravity waves generated by a slow moving object.
    Chepelianskii AD; Chevy F; Raphaël E
    Phys Rev Lett; 2008 Feb; 100(7):074504. PubMed ID: 18352559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow drag in granular materials under high pressure.
    Zhou F; Advani SG; Wetzel ED
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061306. PubMed ID: 15244559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling light into a slow-light photonic-crystal waveguide from a free-space normally-incident beam.
    Hamel P; Grinberg P; Sauvan C; Lalanne P; Baron A; Yacomotti AM; Sagnes I; Raineri F; Bencheikh K; Levenson JA
    Opt Express; 2013 Jul; 21(13):15144-54. PubMed ID: 23842301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.