These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26799221)

  • 21. Fire hazard of titanium powder layers mixed with inert nano TiO
    Yuan C; Cai J; Amyotte P; Li C; Bu Y; Liu K; Li G
    J Hazard Mater; 2018 Mar; 346():19-26. PubMed ID: 29232613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of an Enhanced Version of Recursive Operability Analysis for Combustible Dusts Risk Assessment.
    Barozzi M; Copelli S; Scotton MS; Torretta V
    Int J Environ Res Public Health; 2020 Apr; 17(9):. PubMed ID: 32354158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Explosive property and combustion kinetics of grain dust with different particle sizes.
    Zhao J; Tang G; Wang Y; Han Y
    Heliyon; 2020 Mar; 6(3):e03457. PubMed ID: 32154415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of specific surface area on coal dust explosibility using the 20-L chamber.
    Zlochower IA; Sapko MJ; Perera IE; Brown CB; Harris ML; Rayyan NS
    J Loss Prev Process Ind; 2018 Jul; 54():103-109. PubMed ID: 29681689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combustible wood dust explosions and impacts on environments and health - A review.
    Zhou X; Li X; Cui Z; Wu L; Zhou H; Lu X
    Environ Res; 2023 Jan; 216(Pt 3):114658. PubMed ID: 36374653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of unconfined dust explosions: Turbulent clustering and radiation-induced ignition.
    Liberman M; Kleeorin N; Rogachevskii I; Haugen NEL
    Phys Rev E; 2017 May; 95(5-1):051101. PubMed ID: 28618553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.
    Sanghi A; Ambrose RPK
    J Agric Saf Health; 2016 Jul; 22(3):187-197. PubMed ID: 29140630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influencing factors of coking coal dust explosion pressure and flame and effect of inert dust on its explosion suppression.
    Liu T; Zhao X; Tian W; Jia R; Wang N; Cai Z
    Sci Rep; 2022 Oct; 12(1):17610. PubMed ID: 36266425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ignition of combustible/air mixtures by small radiatively heated surfaces.
    Welzel MM; Schenk S; Hau M; Cammenga HK; Bothe H
    J Hazard Mater; 2000 Feb; 72(1):1-9. PubMed ID: 10648944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors Affecting the Performance of Trickle Dusters for Preventing Explosive Dust Accumulations in Return Airways.
    Sapko MJ; Harris ML; Perera IE; Zlochower IA; Weiss ES
    J Loss Prev Process Ind; 2019 Aug; 61():1-7. PubMed ID: 31745379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation on the Explosion Characteristics of an Aluminum Dust-Diethyl Ether-Air Mixture.
    Yao N; Bai C; Wang L; Liu N
    ACS Omega; 2021 Jul; 6(29):18868-18875. PubMed ID: 34337226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of Fire Parameters of Polyamide 12 Powder for Additive Technologies.
    Kuracina R; Szabová Z; Buranská E; Pastierová A; Gogola P; Buranský I
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Ignition Energy on Environmental Parameters of Gas Explosion in Semiclosed Pipeline.
    Li C; Qiao Z; Hao M; Zhang H; Li G
    ACS Omega; 2022 Mar; 7(12):10394-10405. PubMed ID: 35382290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The quantitative studies on gas explosion suppression by an inert rock dust deposit.
    Song Y; Zhang Q
    J Hazard Mater; 2018 Jul; 353():62-69. PubMed ID: 29635175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Research on the Suppression Effect of Different Types of Inert Dust on Micron-Sized Lignite Dust Explosion Pressure in a Confined Space.
    Liu T; Zhao X; Tian W; Jia R; Wang N; Cai Z; Wu X
    ACS Omega; 2022 Oct; 7(39):35069-35076. PubMed ID: 36211071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds.
    Bu Y; Amyotte P; Li C; Yuan W; Yuan C; Li G
    J Hazard Mater; 2021 Feb; 404(Pt B):124119. PubMed ID: 33075625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-repetition-rate laser ignition of fuel-air mixtures.
    Hsu PS; Roy S; Zhang Z; Sawyer J; Slipchenko MN; Mance JG; Gord JR
    Opt Lett; 2016 Apr; 41(7):1570-3. PubMed ID: 27192289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation on the Inhibition of Aluminum Dust Explosion by Sodium Bicarbonate and Its Solid Product Sodium Carbonate.
    Chen X; Lu K; Xiao Y; Su B; Wang Y; Zhao T
    ACS Omega; 2022 Jan; 7(1):617-628. PubMed ID: 35036728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inert gas influence on the laminar burning velocity of methane-air mixtures.
    Mitu M; Giurcan V; Razus D; Oancea D
    J Hazard Mater; 2017 Jan; 321():440-448. PubMed ID: 27669385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Piezoelectric Effect and Ignition Characteristics of Coal Mine Gob Roof Collapse.
    Wang YN; Wang DM; Xin HH; Zhu YF; Hou Z; Zhang W; Li M
    ACS Omega; 2021 Nov; 6(43):28936-28945. PubMed ID: 34746585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.