These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26799576)

  • 1. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation.
    Selvakumar M; Srivastava P; Pawar HS; Francis NK; Das B; Sathishkumar G; Subramanian B; Jaganathan SK; George G; Anandhan S; Dhara S; Nando GB; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4086-100. PubMed ID: 26799576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.
    Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold.
    Fu S; Ni P; Wang B; Chu B; Peng J; Zheng L; Zhao X; Luo F; Wei Y; Qian Z
    Biomaterials; 2012 Nov; 33(33):8363-71. PubMed ID: 22921926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells.
    Wu X; Miao L; Yao Y; Wu W; Liu Y; Chen X; Sun W
    Int J Nanomedicine; 2014; 9():4135-43. PubMed ID: 25206304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
    Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects.
    Naudot M; Garcia Garcia A; Jankovsky N; Barre A; Zabijak L; Azdad SZ; Collet L; Bedoui F; Hébraud A; Schlatter G; Devauchelle B; Marolleau JP; Legallais C; Le Ricousse S
    J Tissue Eng Regen Med; 2020 Nov; 14(11):1570-1580. PubMed ID: 32755059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.
    Tong SY; Wang Z; Lim PN; Wang W; Thian ES
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1149-1155. PubMed ID: 27772716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds.
    Mohamadyar-Toupkanlou F; Vasheghani-Farahani E; Hanaee-Ahvaz H; Soleimani M; Dodel M; Havasi P; Ardeshirylajimi A; Taherzadeh ES
    ASAIO J; 2017; 63(5):684-691. PubMed ID: 28234642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration.
    Bhattacharjee P; Naskar D; Maiti TK; Bhattacharya D; Kundu SC
    J Colloid Interface Sci; 2016 Jun; 472():16-33. PubMed ID: 26998786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats.
    Boller LA; Shiels SM; Florian DC; Peck SH; Schoenecker JG; Duvall C; Wenke JC; Guelcher SA
    Acta Biomater; 2021 Aug; 130():485-496. PubMed ID: 34129957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retraction of "On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation".
    Selvakumar M; Srivastava P; Pawar HS; Francis NK; Das B; Sathishkumar G; Subramanian B; Jaganathan SK; George G; Anandhan S; Dhara S; Nando GB; Chattopadhyay S
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):12067. PubMed ID: 29609460
    [No Abstract]   [Full Text] [Related]  

  • 15. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.
    Yao Q; Wei B; Liu N; Li C; Guo Y; Shamie AN; Chen J; Tang C; Jin C; Xu Y; Bian X; Zhang X; Wang L
    Tissue Eng Part A; 2015 Apr; 21(7-8):1388-97. PubMed ID: 25530453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering.
    Shirzaei Sani I; Rezaei M; Baradar Khoshfetrat A; Razzaghi D
    Int J Biol Macromol; 2021 Jul; 182():1638-1649. PubMed ID: 34052267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone.
    Vasconcellos LMR; Elias CMV; Minhoto GB; Abdala JMA; Andrade TM; de Araujo JCR; Gusmão SBS; Viana BC; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2020 Jul; 31(8):72. PubMed ID: 32719958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.