These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26799576)

  • 21. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes.
    Xue J; He M; Liu H; Niu Y; Crawford A; Coates PD; Chen D; Shi R; Zhang L
    Biomaterials; 2014 Nov; 35(34):9395-405. PubMed ID: 25134855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior.
    Zhang S; Jiang G; Prabhakaran MP; Qin X; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():687-696. PubMed ID: 28629069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value.
    Shahrezaie M; Moshiri A; Shekarchi B; Oryan A; Maffulli N; Parvizi J
    J Tissue Eng Regen Med; 2018 Apr; 12(4):936-960. PubMed ID: 28714236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.
    Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F
    Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration.
    Yin B; Ma P; Chen J; Wang H; Wu G; Li B; Li Q; Huang Z; Qiu G; Wu Z
    Int J Mol Sci; 2016 Apr; 17(4):575. PubMed ID: 27092492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lysophosphatidic Acid/Polydopamine-Modified nHA Composite Scaffolds for Enhanced Osteogenesis via Upregulating the Wnt/Beta-Catenin Pathway.
    Chen J; Qian Y; Li H; Zuo W; Sun W; Xing D; Zhou X
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13466-13480. PubMed ID: 38445450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D
    Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion.
    Zhang Z; Wu G; Cao Y; Liu C; Jin Y; Wang Y; Yang L; Guo J; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():445-454. PubMed ID: 30274077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chitosan-coated PCL/nano-hydroxyapatite aerogel integrated with a nanofiber membrane for providing antibacterial activity and guiding bone regeneration.
    Deng X; Yu C; Zhang X; Tang X; Guo Q; Fu M; Wang Y; Fang K; Wu T
    Nanoscale; 2024 May; 16(20):9861-9874. PubMed ID: 38712977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model.
    Yeo A; Cheok C; Teoh SH; Zhang ZY; Buser D; Bosshardt DD
    Clin Oral Implants Res; 2012 Dec; 23(12):1322-32. PubMed ID: 22145939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model.
    He Y; Dong Y; Cui F; Chen X; Lin R
    PLoS One; 2015; 10(8):e0135366. PubMed ID: 26258851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silk fibroin/methacrylated gelatine/hydroxyapatite biomimetic nanofibrous membranes for guided bone regeneration.
    Li B; Chen Y; He J; Shu Y; Yang H; Liu J; Zhang C; Xiao W; Liu Z; Liao X
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130380. PubMed ID: 38395277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration.
    Diaz-Gomez L; García-González CA; Wang J; Yang F; Aznar-Cervantes S; Cenis JL; Reyes R; Delgado A; Évora C; Concheiro A; Alvarez-Lorenzo C
    Int J Pharm; 2017 Jul; 527(1-2):115-125. PubMed ID: 28539234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration.
    Harikrishnan P; Islam H; Sivasamy A
    J Craniofac Surg; 2019 Jan; 30(1):265-269. PubMed ID: 30339597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A biomimetic in situ mineralization ECM composite scaffold to promote endogenous bone regeneration.
    Tang L; Chen X; Wang M; Liu Y; Li B; Li Y; Zhang Y
    Colloids Surf B Biointerfaces; 2023 Dec; 232():113587. PubMed ID: 37844476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits.
    Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S
    Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.