BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 26799639)

  • 1. Ultrathin Free-Standing Ternary-Alloy Nanosheets.
    Hong JW; Kim Y; Wi DH; Lee S; Lee SU; Lee YW; Choi SI; Han SW
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2753-8. PubMed ID: 26799639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid synthesis of Palladium-Platinum-Nickel ultrathin porous nanosheets with high catalytic performance for alcohol electrooxidation.
    Wang D; Zhang Y; Zhang K; Wang X; Wang C; Li Z; Gao F; Du Y
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):350-357. PubMed ID: 37413869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Crystalline Ultrathin Nickel-Cobalt Alloy Nanosheets Array for Direct Hydrazine Fuel Cells.
    Feng G; Kuang Y; Li P; Han N; Sun M; Zhang G; Sun X
    Adv Sci (Weinh); 2017 Mar; 4(3):1600179. PubMed ID: 28331781
    [No Abstract]   [Full Text] [Related]  

  • 4. Single-Crystalline Rhodium Nanosheets with Atomic Thickness.
    Zhao L; Xu C; Su H; Liang J; Lin S; Gu L; Wang X; Chen M; Zheng N
    Adv Sci (Weinh); 2015 Jun; 2(6):1500100. PubMed ID: 27980955
    [No Abstract]   [Full Text] [Related]  

  • 5. Highly branched and ultrathin Au nanodendrites for reduction catalysis.
    Hao Q; Zhang Y; Zheng J; Guo K; Xu D
    J Colloid Interface Sci; 2024 Mar; 658():879-888. PubMed ID: 38157612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Responsive Peptide-Based Ultrathin Nanosheets Prepared by a Horizontal Monolayer Assembly.
    He Y; Zhu X; Wang L; Zhang Y; Bai C; Wu D
    Angew Chem Int Ed Engl; 2024 May; ():e202405765. PubMed ID: 38721653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-Large Two-Dimensional Metal Nanowire Networks by Microfluidic Laminar Flow Synthesis for Formic Acid Electrooxidation.
    Zhang D; Bu J; Dou X; Yan Y; Liu Q; Wang X; Sun Z; Guo G; Zheng K; Deng J
    Angew Chem Int Ed Engl; 2024 May; ():e202408765. PubMed ID: 38797705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin RhCo alloy nanowires with defect-rich active sites for alkaline hydrogen evolution electrocatalysis.
    Zhu L; Xu D; Yi C
    Chem Commun (Camb); 2023 Nov; 59(94):13978-13981. PubMed ID: 37937406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrophotometric Analysis and Optimization of 2D Gold Nanosheet Formation.
    Fox J; Newham G; Bushby RJ; Valleley EMA; Coletta PL; Evans SD
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):3067-3076. PubMed ID: 36824584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PdAu Nanosheets for Visible-Light-Driven Suzuki Cross-Coupling Reactions.
    Casey É; Holmes JD; Collins G
    ACS Appl Nano Mater; 2022 Nov; 5(11):16196-16206. PubMed ID: 36466303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells.
    Liu H; Zhao J; Li X
    Electrochem Energ Rev; 2022; 5(4):13. PubMed ID: 36212026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PdPbAg alloy NPs immobilized on reduced graphene oxide/In
    Wu Z; Zhong Y; Wang Z; Li L; Liu X
    RSC Adv; 2022 Jul; 12(31):19929-19935. PubMed ID: 35865206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of wavy carbon nanowires
    Li F; Yao C; Zheng Y; Hou S
    RSC Adv; 2018 Jun; 8(37):20593-20602. PubMed ID: 35542346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst.
    Lv F; Huang B; Feng J; Zhang W; Wang K; Li N; Zhou J; Zhou P; Yang W; Du Y; Su D; Guo S
    Natl Sci Rev; 2021 Sep; 8(9):nwab019. PubMed ID: 34691734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Porous Au-Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation.
    Kim HC; Hong JW
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimetallic Hollow Mesoporous Nanospheres with Synergistically Structural and Compositional Effects for Highly Efficient Ethanol Electrooxidation.
    Lv H; Lopes A; Xu D; Liu B
    ACS Cent Sci; 2018 Oct; 4(10):1412-1419. PubMed ID: 30410979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the Edge Sites of 2D Pd Nanostructures with Different Fractal Dimensions for Enhanced Electrocatalytic Performance.
    Yan Y; Li X; Tang M; Zhong H; Huang J; Bian T; Jiang Y; Han Y; Zhang H; Yang D
    Adv Sci (Weinh); 2018 Aug; 5(8):1800430. PubMed ID: 30128248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts.
    Feng Y; Shao Q; Ji Y; Cui X; Li Y; Zhu X; Huang X
    Sci Adv; 2018 Jul; 4(7):eaap8817. PubMed ID: 30027113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts.
    Chen L; Lu L; Zhu H; Chen Y; Huang Y; Li Y; Wang L
    Nat Commun; 2017 Jan; 8():14136. PubMed ID: 28071650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis.
    Liu J; Zheng Y; Hong Z; Cai K; Zhao F; Han H
    Sci Adv; 2016 Sep; 2(9):e1600858. PubMed ID: 27704047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.