These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26799675)

  • 1. Protein Structural Memory Influences Ligand Binding Mode(s) and Unbinding Rates.
    Xu M; Caflisch A; Hamm P
    J Chem Theory Comput; 2016 Mar; 12(3):1393-9. PubMed ID: 26799675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The free energy landscape of small molecule unbinding.
    Huang D; Caflisch A
    PLoS Comput Biol; 2011 Feb; 7(2):e1002002. PubMed ID: 21390201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP.
    Zacharias M
    Proteins; 2004 Mar; 54(4):759-67. PubMed ID: 14997571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute FKBP binding affinities obtained via nonequilibrium unbinding simulations.
    Ytreberg FM
    J Chem Phys; 2009 Apr; 130(16):164906. PubMed ID: 19405629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small molecule binding to proteins: affinity and binding/unbinding dynamics from atomistic simulations.
    Huang D; Caflisch A
    ChemMedChem; 2011 Sep; 6(9):1578-80. PubMed ID: 21674810
    [No Abstract]   [Full Text] [Related]  

  • 6. X-ray structures of small ligand-FKBP complexes provide an estimate for hydrophobic interaction energies.
    Burkhard P; Taylor P; Walkinshaw MD
    J Mol Biol; 2000 Jan; 295(4):953-62. PubMed ID: 10656803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity.
    Shi D; Bai Q; Zhou S; Liu X; Liu H; Yao X
    Proteins; 2018 Jan; 86(1):43-56. PubMed ID: 29023988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Release Pathways Obtained with WExplore: Residence Times and Mechanisms.
    Dickson A; Lotz SD
    J Phys Chem B; 2016 Jun; 120(24):5377-85. PubMed ID: 27231969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry.
    Adams B; Smith AT; Bailey S; McEwan AG; Bray RC
    Biochemistry; 1999 Jun; 38(26):8501-11. PubMed ID: 10387097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FKBP family proteins: immunophilins with versatile biological functions.
    Kang CB; Hong Y; Dhe-Paganon S; Yoon HS
    Neurosignals; 2008; 16(4):318-25. PubMed ID: 18635947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of organic solvents and small molecules for locating binding sites on proteins in solutions.
    Dalvit C; Floersheim P; Zurini M; Widmer A
    J Biomol NMR; 1999 May; 14(1):23-32. PubMed ID: 10419292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cosolvent Dimethyl Sulfoxide Influences Protein-Ligand Binding Kinetics via Solvent Viscosity Effects: Revealing the Success Rate of Complex Formation Following Diffusive Protein-Ligand Encounter.
    Wernersson S; Birgersson S; Akke M
    Biochemistry; 2023 Jan; 62(1):44-52. PubMed ID: 36542811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand shape emerges in solvent dipole ordering region at ligand binding site of protein.
    Murata K; Nagata N; Nakanishi I; Kitaura K
    J Comput Chem; 2010 Mar; 31(4):791-6. PubMed ID: 19569185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme.
    Roy S; Jana B; Bagchi B
    J Chem Phys; 2012 Mar; 136(11):115103. PubMed ID: 22443797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational anti-AIDS drug design based on the analysis of the specific interactions between immunophilins and the HIV-1 gp120 V3 loop. Application to the FK506-binding protein.
    Andrianov AM
    J Biomol Struct Dyn; 2008 Aug; 26(1):49-56. PubMed ID: 18533725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonideality in diffusion of ionic and neutral solutes and hydrogen bond dynamics in dimethyl sulfoxide-chloroform mixtures of varying composition.
    Gupta R; Chandra A
    J Comput Chem; 2011 Sep; 32(12):2679-89. PubMed ID: 21660995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.
    Okimoto N; Suenaga A; Taiji M
    J Biomol Struct Dyn; 2017 Nov; 35(15):3221-3231. PubMed ID: 27771988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the structure of Mycobacterium tuberculosis MbtA: model validation using molecular dynamics simulations and docking studies.
    Maganti L; Open Source Drug Discovery Consortium ; Ghoshal N
    J Biomol Struct Dyn; 2014; 32(2):273-88. PubMed ID: 23527569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations.
    Wolf S; Amaral M; Lowinski M; Vallée F; Musil D; Güldenhaupt J; Dreyer MK; Bomke J; Frech M; Schlitter J; Gerwert K
    J Chem Inf Model; 2019 Dec; 59(12):5135-5147. PubMed ID: 31697501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water movement during ligand unbinding from receptor site.
    Chau PL
    Biophys J; 2004 Jul; 87(1):121-8. PubMed ID: 15240451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.