These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 26799700)
1. Estimating treatment effect in a proportional hazards model in randomized clinical trials with all-or-nothing compliance. Li S; Gray RJ Biometrics; 2016 Sep; 72(3):742-50. PubMed ID: 26799700 [TBL] [Abstract][Full Text] [Related]
2. Semiparametric regression analysis of interval-censored data. Goetghebeur E; Ryan L Biometrics; 2000 Dec; 56(4):1139-44. PubMed ID: 11129472 [TBL] [Abstract][Full Text] [Related]
3. Performance of statistical methods for analysing survival data in the presence of non-random compliance. Odondi L; McNamee R Stat Med; 2010 Dec; 29(29):2994-3003. PubMed ID: 20963732 [TBL] [Abstract][Full Text] [Related]
4. A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data. Wang L; McMahan CS; Hudgens MG; Qureshi ZP Biometrics; 2016 Mar; 72(1):222-31. PubMed ID: 26393917 [TBL] [Abstract][Full Text] [Related]
5. Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials. O'Malley AJ; Normand SL Biometrics; 2005 Jun; 61(2):325-34. PubMed ID: 16011678 [TBL] [Abstract][Full Text] [Related]
6. Causal proportional hazards models and time-constant exposure in randomized clinical trials. Loeys T; Goetghebeur E; Vandebosch A Lifetime Data Anal; 2005 Dec; 11(4):435-49. PubMed ID: 16328570 [TBL] [Abstract][Full Text] [Related]
7. A causal proportional hazards estimator for the effect of treatment actually received in a randomized trial with all-or-nothing compliance. Loeys T; Goetghebeur E Biometrics; 2003 Mar; 59(1):100-5. PubMed ID: 12762446 [TBL] [Abstract][Full Text] [Related]
8. A joint model for survival and longitudinal data measured with error. Wulfsohn MS; Tsiatis AA Biometrics; 1997 Mar; 53(1):330-9. PubMed ID: 9147598 [TBL] [Abstract][Full Text] [Related]
9. Stochastic EM algorithm for doubly interval-censored data. Dejardin D; Lesaffre E Biostatistics; 2013 Sep; 14(4):766-78. PubMed ID: 23728851 [TBL] [Abstract][Full Text] [Related]
10. A version of the EM algorithm for proportional hazard model with random effects. Abrahantes JC; Burzykowski T Biom J; 2005 Dec; 47(6):847-62. PubMed ID: 16450857 [TBL] [Abstract][Full Text] [Related]
11. Analysis of time-to-event data using a flexible mixture model under a constraint of proportional hazards. Liu GF; Liao JJZ J Biopharm Stat; 2020 Sep; 30(5):783-796. PubMed ID: 32589509 [TBL] [Abstract][Full Text] [Related]
12. An extended general location model for causal inferences from data subject to noncompliance and missing values. Peng Y; Little RJ; Raghunathan TE Biometrics; 2004 Sep; 60(3):598-607. PubMed ID: 15339281 [TBL] [Abstract][Full Text] [Related]
13. Expected estimating equations via EM for proportional hazards regression with covariate misclassification. Wang CY; Song X Biostatistics; 2013 Apr; 14(2):351-65. PubMed ID: 23178735 [TBL] [Abstract][Full Text] [Related]
14. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Elashoff RM; Li G; Li N Biometrics; 2008 Sep; 64(3):762-771. PubMed ID: 18162112 [TBL] [Abstract][Full Text] [Related]
15. A Markov chain Monte Carlo EM algorithm for analyzing interval-censored data under the Cox proportional hazards model. Goggins WB; Finkelstein DM; Schoenfeld DA; Zaslavsky AM Biometrics; 1998 Dec; 54(4):1498-507. PubMed ID: 9883548 [TBL] [Abstract][Full Text] [Related]
16. Adjusting for observational secondary treatments in estimating the effects of randomized treatments. Zhang M; Wang Y Biostatistics; 2013 Jul; 14(3):491-501. PubMed ID: 23349243 [TBL] [Abstract][Full Text] [Related]
17. Does Cox analysis of a randomized survival study yield a causal treatment effect? Aalen OO; Cook RJ; Røysland K Lifetime Data Anal; 2015 Oct; 21(4):579-93. PubMed ID: 26100005 [TBL] [Abstract][Full Text] [Related]
18. Enhanced precision in the analysis of randomized trials with ordinal outcomes. Díaz I; Colantuoni E; Rosenblum M Biometrics; 2016 Jun; 72(2):422-31. PubMed ID: 26576013 [TBL] [Abstract][Full Text] [Related]
19. An Expectation Maximization algorithm for fitting the generalized odds-rate model to interval censored data. Zhou J; Zhang J; Lu W Stat Med; 2017 Mar; 36(7):1157-1171. PubMed ID: 28004414 [TBL] [Abstract][Full Text] [Related]
20. Incorporating prognostic factors into causal estimators: a comparison of methods for randomised controlled trials with a time-to-event outcome. Hampson LV; Metcalfe C Stat Med; 2012 Nov; 31(26):3073-88. PubMed ID: 22714785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]