BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26799711)

  • 1. Modelling the transport of engineered metallic nanoparticles in the river Rhine.
    Markus AA; Parsons JR; Roex EW; de Voogt P; Laane RW
    Water Res; 2016 Mar; 91():214-24. PubMed ID: 26799711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse.
    Markus AA; Parsons JR; Roex EW; Kenter GC; Laane RW
    Sci Total Environ; 2013 Jul; 456-457():154-60. PubMed ID: 23591066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model.
    Dale AL; Lowry GV; Casman EA
    Environ Sci Technol; 2015 Jun; 49(12):7285-93. PubMed ID: 26018454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the aquatic emissions and fate of perfluorooctane sulfonate (PFOS) into the river Rhine.
    Paul AG; Scheringer M; Hungerbühler K; Loos R; Jones KC; Sweetman AJ
    J Environ Monit; 2012 Feb; 14(2):524-30. PubMed ID: 22134637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles.
    Blaser SA; Scheringer M; Macleod M; Hungerbühler K
    Sci Total Environ; 2008 Feb; 390(2-3):396-409. PubMed ID: 18031795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and temporal variations of TMDD in the river Rhine, Germany.
    Guedez AA; Frömmel S; Diehl P; Püttmann W
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):321-30. PubMed ID: 19526261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials.
    Westerhoff P; Song G; Hristovski K; Kiser MA
    J Environ Monit; 2011 May; 13(5):1195-203. PubMed ID: 21494702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of extreme river discharge conditions on the quality of suspended particulate matter in Rivers Meuse and Rhine (The Netherlands).
    Hamers T; Kamstra JH; van Gils J; Kotte MC; van Hattum AG
    Environ Res; 2015 Nov; 143(Pt A):241-55. PubMed ID: 26519830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution.
    Dumont E; Johnson AC; Keller VD; Williams RJ
    Environ Pollut; 2015 Jan; 196():341-9. PubMed ID: 25463731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants.
    Polesel F; Farkas J; Kjos M; Almeida Carvalho P; Flores-Alsina X; Gernaey KV; Hansen SF; Plósz BG; Booth AM
    Water Res; 2018 Sep; 141():19-31. PubMed ID: 29753974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and quantification of engineered particles in urban runoff.
    Wang J; Nabi MM; Mohanty SK; Afrooz AN; Cantando E; Aich N; Baalousha M
    Chemosphere; 2020 Jun; 248():126070. PubMed ID: 32028165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.
    Donovan AR; Adams CD; Ma Y; Stephan C; Eichholz T; Shi H
    Chemosphere; 2016 Feb; 144():148-53. PubMed ID: 26347937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulations of the transformation and removal of Ag, TiO2, and ZnO nanoparticles in wastewater treatment and land application of biosolids.
    Barton LE; Auffan M; Durenkamp M; McGrath S; Bottero JY; Wiesner MR
    Sci Total Environ; 2015 Apr; 511():535-43. PubMed ID: 25585156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of environmental fate models for engineered nanoparticles--a case study of TiO2 nanoparticles in the Rhine River.
    Praetorius A; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2012 Jun; 46(12):6705-13. PubMed ID: 22502632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO₂ nanoparticles in UK field scenarios.
    Johnson AC; Bowes MJ; Crossley A; Jarvie HP; Jurkschat K; Jürgens MD; Lawlor AJ; Park B; Rowland P; Spurgeon D; Svendsen C; Thompson IP; Barnes RJ; Williams RJ; Xu N
    Sci Total Environ; 2011 Jun; 409(13):2503-10. PubMed ID: 21501856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation of Sb and Ti in an undisturbed floodplain soil after application of Sb2O3 and TiO2 nanoparticles to the surface.
    Duester L; Prasse C; Vogel JV; Vink JP; Schaumann GE
    J Environ Monit; 2011 May; 13(5):1204-11. PubMed ID: 21403952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disaggregation of silver nanoparticle homoaggregates in a river water matrix.
    Metreveli G; Philippe A; Schaumann GE
    Sci Total Environ; 2015 Dec; 535():35-44. PubMed ID: 25433382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER.
    Hüffmeyer N; Klasmeier J; Matthies M
    Sci Total Environ; 2009 Mar; 407(7):2296-305. PubMed ID: 19150732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.