These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 26799729)
1. Engineering natural heart valves: possibilities and challenges. Namiri M; Ashtiani MK; Mashinchian O; Hasani-Sadrabadi MM; Mahmoudi M; Aghdami N; Baharvand H J Tissue Eng Regen Med; 2017 May; 11(5):1675-1683. PubMed ID: 26799729 [TBL] [Abstract][Full Text] [Related]
2. Tissue engineering of heart valves: advances and current challenges. Mol A; Smits AI; Bouten CV; Baaijens FP Expert Rev Med Devices; 2009 May; 6(3):259-75. PubMed ID: 19419284 [TBL] [Abstract][Full Text] [Related]
3. Engineering of a polymer layered bio-hybrid heart valve scaffold. Jahnavi S; Kumary TV; Bhuvaneshwar GS; Natarajan TS; Verma RS Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():263-73. PubMed ID: 25842134 [TBL] [Abstract][Full Text] [Related]
4. Strategies for development of decellularized heart valve scaffolds for tissue engineering. Snyder Y; Jana S Biomaterials; 2022 Sep; 288():121675. PubMed ID: 35953330 [TBL] [Abstract][Full Text] [Related]
5. Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? Badria AF; Koutsoukos PG; Mavrilas D J Mater Sci Mater Med; 2020 Dec; 31(12):132. PubMed ID: 33278023 [TBL] [Abstract][Full Text] [Related]
6. Functional Oxidized Hyaluronic Acid Cross-Linked Decellularized Heart Valves for Improved Immunomodulation, Anti-Calcification, and Recellularization. Wu Y; Chen X; Song P; Li R; Zhou Y; Wang Q; Shi J; Qiao W; Dong N Adv Healthc Mater; 2024 Jun; 13(16):e2303737. PubMed ID: 38560921 [TBL] [Abstract][Full Text] [Related]
8. Improving the biological function of decellularized heart valves through integration of protein tethering and three-dimensional cell seeding in a bioreactor. Namiri M; Kazemi Ashtiani M; Abbasalizadeh S; Mazidi Z; Mahmoudi E; Nikeghbalian S; Aghdami N; Baharvand H J Tissue Eng Regen Med; 2018 Apr; 12(4):e1865-e1879. PubMed ID: 29164801 [TBL] [Abstract][Full Text] [Related]
9. Human or animal homograft: could they have a future as a biological scaffold for engineered heart valves? Dainese L; Biglioli P J Cardiovasc Surg (Torino); 2010 Jun; 51(3):449-56. PubMed ID: 20523298 [TBL] [Abstract][Full Text] [Related]
10. Bioengineering strategies for polymeric scaffold for tissue engineering an aortic heart valve: an update. Morsi YS Int J Artif Organs; 2014 Sep; 37(9):651-67. PubMed ID: 25262629 [TBL] [Abstract][Full Text] [Related]
11. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Syedain Z; Reimer J; Schmidt J; Lahti M; Berry J; Bianco R; Tranquillo RT Biomaterials; 2015 Dec; 73():175-84. PubMed ID: 26409002 [TBL] [Abstract][Full Text] [Related]
12. A riboflavin-ultraviolet light A-crosslinked decellularized heart valve for improved biomechanical properties, stability, and biocompatibility. Liu C; Qiao W; Cao H; Dai J; Li F; Shi J; Dong N Biomater Sci; 2020 May; 8(9):2549-2563. PubMed ID: 32226995 [TBL] [Abstract][Full Text] [Related]
13. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Breuer CK; Mettler BA; Anthony T; Sales VL; Schoen FJ; Mayer JE Tissue Eng; 2004; 10(11-12):1725-36. PubMed ID: 15684681 [TBL] [Abstract][Full Text] [Related]
14. Cells for tissue engineering of cardiac valves. Jana S; Tranquillo RT; Lerman A J Tissue Eng Regen Med; 2016 Oct; 10(10):804-824. PubMed ID: 25712485 [TBL] [Abstract][Full Text] [Related]
15. A review of: application of synthetic scaffold in tissue engineering heart valves. Fallahiarezoudar E; Ahmadipourroudposht M; Idris A; Mohd Yusof N Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():556-65. PubMed ID: 25579957 [TBL] [Abstract][Full Text] [Related]
16. The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. O'Brien MF; Goldstein S; Walsh S; Black KS; Elkins R; Clarke D Semin Thorac Cardiovasc Surg; 1999 Oct; 11(4 Suppl 1):194-200. PubMed ID: 10660192 [TBL] [Abstract][Full Text] [Related]
17. Biomatrix/polymer composite material for heart valve tissue engineering. Stamm C; Khosravi A; Grabow N; Schmohl K; Treckmann N; Drechsel A; Nan M; Schmitz KP; Haubold A; Steinhoff G Ann Thorac Surg; 2004 Dec; 78(6):2084-92; discussion 2092-3. PubMed ID: 15561041 [TBL] [Abstract][Full Text] [Related]
18. In vitro comparative assessment of decellularized bovine pericardial patches and commercial bioprosthetic heart valves. Aguiari P; Iop L; Favaretto F; Fidalgo CM; Naso F; Milan G; Vindigni V; Spina M; Bassetto F; Bagno A; Vettor R; Gerosa G Biomed Mater; 2017 Feb; 12(1):015021. PubMed ID: 28157718 [TBL] [Abstract][Full Text] [Related]
19. Age-related structural changes in cardiac valves: implications for tissue-engineered repairs. Barzilla JE; Blevins TL; Grande-Allen KJ Am J Geriatr Cardiol; 2006; 15(5):311-5. PubMed ID: 16957451 [TBL] [Abstract][Full Text] [Related]
20. [A xenogeneic acellularized matrix for heart valve tissue engineering: in vivo study in a sheep model]. Leyh R; Wilhelmi M; Haverich A; Mertsching H Z Kardiol; 2003 Nov; 92(11):938-46. PubMed ID: 14634763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]