These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26799916)

  • 21. Overcoming entropic barrier with coupled sampling at dual resolutions.
    Lwin TZ; Luo R
    J Chem Phys; 2005 Nov; 123(19):194904. PubMed ID: 16321110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restriction versus guidance in protein structure prediction.
    Hegler JA; Lätzer J; Shehu A; Clementi C; Wolynes PG
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15302-7. PubMed ID: 19706384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generating, Maintaining, and Exploiting Diversity in a Memetic Algorithm for Protein Structure Prediction.
    Garza-Fabre M; Kandathil SM; Handl J; Knowles J; Lovell SC
    Evol Comput; 2016; 24(4):577-607. PubMed ID: 26908350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Building a better fragment library for de novo protein structure prediction.
    de Oliveira SH; Shi J; Deane CM
    PLoS One; 2015; 10(4):e0123998. PubMed ID: 25901595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic Comparison of Amber and Rosetta Energy Functions for Protein Structure Evaluation.
    Rubenstein AB; Blacklock K; Nguyen H; Case DA; Khare SD
    J Chem Theory Comput; 2018 Nov; 14(11):6015-6025. PubMed ID: 30240210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimizing and learning energy functions for side-chain prediction.
    Yanover C; Schueler-Furman O; Weiss Y
    J Comput Biol; 2008 Sep; 15(7):899-911. PubMed ID: 18707538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo protein structure prediction by dynamic fragment assembly and conformational space annealing.
    Lee J; Lee J; Sasaki TN; Sasai M; Seok C; Lee J
    Proteins; 2011 Aug; 79(8):2403-17. PubMed ID: 21604307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of protein structure by simulating coarse-grained folding pathways: a preliminary report.
    Colubri A
    J Biomol Struct Dyn; 2004 Apr; 21(5):625-38. PubMed ID: 14769055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization.
    Vajda S; Jafri MS; Sezerman OU; DeLisi C
    Biopolymers; 1993 Jan; 33(1):173-92. PubMed ID: 8427934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contact order and ab initio protein structure prediction.
    Bonneau R; Ruczinski I; Tsai J; Baker D
    Protein Sci; 2002 Aug; 11(8):1937-44. PubMed ID: 12142448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review.
    Christen M; van Gunsteren WF
    J Comput Chem; 2008 Jan; 29(2):157-66. PubMed ID: 17570138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease.
    Patel S; Sasidhar YU
    J Pept Sci; 2007 Oct; 13(10):679-92. PubMed ID: 17787022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folding proteins with a simple energy function and extensive conformational searching.
    Yue K; Dill KA
    Protein Sci; 1996 Feb; 5(2):254-61. PubMed ID: 8745403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy landscapes.
    Roth CA; Dreyfus T; Robert CH; Cazals F
    J Comput Chem; 2016 Mar; 37(8):739-52. PubMed ID: 26714673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Data-Driven Evolutionary Algorithm for Mapping Multibasin Protein Energy Landscapes.
    Clausen R; Shehu A
    J Comput Biol; 2015 Sep; 22(9):844-60. PubMed ID: 26203626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical studies of protein conformation by means of energy computations.
    Némethy G; Scheraga HA
    FASEB J; 1990 Nov; 4(14):3189-97. PubMed ID: 2227210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid Monte Carlo with multidimensional replica exchanges: conformational equilibria of the hypervariable regions of a llama VHH antibody domain.
    Fenwick MK; Escobedo FA
    Biopolymers; 2003 Feb; 68(2):160-77. PubMed ID: 12548621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced conformational sampling method for proteins based on the TaBoo SeArch algorithm: application to the folding of a mini-protein, chignolin.
    Harada R; Takano Y; Shigeta Y
    J Comput Chem; 2015 Apr; 36(10):763-72. PubMed ID: 25691321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assembly of polypeptide and protein backbone conformations from low energy ensembles of short fragments: development of strategies and construction of models for myoglobin, lysozyme, and thymosin beta 4.
    Sippl MJ; Hendlich M; Lackner P
    Protein Sci; 1992 May; 1(5):625-40. PubMed ID: 1304362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.