These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 26800222)
1. Photochemical Reduction of Low Concentrations of CO2 in a Porous Coordination Polymer with a Ruthenium(II)-CO Complex. Kajiwara T; Fujii M; Tsujimoto M; Kobayashi K; Higuchi M; Tanaka K; Kitagawa S Angew Chem Int Ed Engl; 2016 Feb; 55(8):2697-700. PubMed ID: 26800222 [TBL] [Abstract][Full Text] [Related]
2. Effect of Micropores of a Porous Coordination Polymer on the Product Selectivity in Ru Kajiwara T; Ikeda M; Kobayashi K; Higuchi M; Tanaka K; Kitagawa S Chem Asian J; 2021 Nov; 16(21):3341-3344. PubMed ID: 34498403 [TBL] [Abstract][Full Text] [Related]
3. Reactivity of CO2 Activated on Transition Metals and Sulfur Ligands. Kobayashi K; Tanaka K Inorg Chem; 2015 Jun; 54(11):5085-95. PubMed ID: 25978130 [TBL] [Abstract][Full Text] [Related]
4. Photocatalytic CO Kuramochi Y; Sekine M; Kitamura K; Maegawa Y; Goto Y; Shirai S; Inagaki S; Ishida H Chemistry; 2017 Aug; 23(43):10301-10309. PubMed ID: 28467639 [TBL] [Abstract][Full Text] [Related]
5. High CO Noro SI; Matsuda R; Hijikata Y; Inubushi Y; Takeda S; Kitagawa S; Takahashi Y; Yoshitake M; Kubo K; Nakamura T Chempluschem; 2015 Oct; 80(10):1517-1524. PubMed ID: 31973388 [TBL] [Abstract][Full Text] [Related]
6. Photocatalytic reduction of CO Zhu CY; Zhang YQ; Liao RZ; Xia W; Hu JC; Wu J; Liu H; Wang F Dalton Trans; 2018 Oct; 47(37):13142-13150. PubMed ID: 30168831 [TBL] [Abstract][Full Text] [Related]
7. Selective generation of formamides through photocatalytic CO2 reduction catalyzed by ruthenium carbonyl compounds. Kobayashi K; Kikuchi T; Kitagawa S; Tanaka K Angew Chem Int Ed Engl; 2014 Oct; 53(44):11813-7. PubMed ID: 25199795 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Highly Porous Coordination Polymers with Open Metal Sites for Enhanced Gas Uptake and Separation. Song KS; Kim D; Polychronopoulou K; Coskun A ACS Appl Mater Interfaces; 2016 Oct; 8(40):26860-26867. PubMed ID: 27652603 [TBL] [Abstract][Full Text] [Related]
9. Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts. Kuriki R; Ishitani O; Maeda K ACS Appl Mater Interfaces; 2016 Mar; 8(9):6011-8. PubMed ID: 26891142 [TBL] [Abstract][Full Text] [Related]
10. An Exceptionally Efficient Co-Co Xu Y; Mo J; Fu ZC; Liu S; Yang Z; Fu WF Chemistry; 2018 Jun; 24(34):8596-8602. PubMed ID: 29718568 [TBL] [Abstract][Full Text] [Related]
11. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Wang C; Xie Z; deKrafft KE; Lin W J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787 [TBL] [Abstract][Full Text] [Related]
12. Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer. Culp JT; Sui L; Goodman A; Luebke D J Colloid Interface Sci; 2013 Mar; 393():278-85. PubMed ID: 23168045 [TBL] [Abstract][Full Text] [Related]
13. Zirconium based porous coordination polymer (PCP) bearing organocatalytic ligand: A promising dual catalytic center for ultrasonic heterocycle synthesis. Panahi P; Nouruzi N; Doustkhah E; Mohtasham H; Ahadi A; Ghiasi-Moaser A; Rostamnia S; Mahmoudi G; Khataee A Ultrason Sonochem; 2019 Nov; 58():104653. PubMed ID: 31450335 [TBL] [Abstract][Full Text] [Related]
14. Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO Bhanja P; Modak A; Bhaumik A Chemistry; 2018 May; 24(29):7278-7297. PubMed ID: 29396871 [TBL] [Abstract][Full Text] [Related]
15. Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center. Chen L; Guo Z; Wei XG; Gallenkamp C; Bonin J; Anxolabéhère-Mallart E; Lau KC; Lau TC; Robert M J Am Chem Soc; 2015 Sep; 137(34):10918-21. PubMed ID: 26267016 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and catalytic application of PVP-coated Ru nanoparticles embedded in a porous metal-organic framework. Sadakiyo M; Kon-no M; Sato K; Nagaoka K; Kasai H; Kato K; Yamauchi M Dalton Trans; 2014 Aug; 43(29):11295-8. PubMed ID: 24934183 [TBL] [Abstract][Full Text] [Related]
17. Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO Sun Q; Jin Y; Aguila B; Meng X; Ma S; Xiao FS ChemSusChem; 2017 Mar; 10(6):1160-1165. PubMed ID: 27976539 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties. Kozachuk O; Luz I; Llabrés i Xamena FX; Noei H; Kauer M; Albada HB; Bloch ED; Marler B; Wang Y; Muhler M; Fischer RA Angew Chem Int Ed Engl; 2014 Jul; 53(27):7058-62. PubMed ID: 24838592 [TBL] [Abstract][Full Text] [Related]
19. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid. Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639 [TBL] [Abstract][Full Text] [Related]
20. Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst. Liang W; Church TL; Zheng S; Zhou C; Haynes BS; D'Alessandro DM Chemistry; 2015 Dec; 21(51):18576-9. PubMed ID: 26538203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]