These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26801018)

  • 1. Wetting transitions on patterned surfaces with diffuse interaction potentials embedded in a Young-Laplace formulation.
    Pashos G; Kokkoris G; Papathanasiou AG; Boudouvis AG
    J Chem Phys; 2016 Jan; 144(3):034105. PubMed ID: 26801018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimum energy paths of wetting transitions on grooved surfaces.
    Pashos G; Kokkoris G; Boudouvis AG
    Langmuir; 2015 Mar; 31(10):3059-68. PubMed ID: 25715270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Patterned Surfaces for Improved Superhydrophobicity through Cost-Effective Large-Scale Computations.
    Krokos V; Pashos G; Spyropoulos AN; Kokkoris G; Papathanasiou AG; Boudouvis AG
    Langmuir; 2019 May; 35(20):6793-6802. PubMed ID: 31033295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting transition on patterned surfaces: transition states and energy barriers.
    Ren W
    Langmuir; 2014 Mar; 30(10):2879-85. PubMed ID: 24564531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions.
    Manukyan G; Oh JM; van den Ende D; Lammertink RG; Mugele F
    Phys Rev Lett; 2011 Jan; 106(1):014501. PubMed ID: 21231746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces.
    Chamakos NT; Kavousanakis ME; Papathanasiou AG
    Soft Matter; 2013 Oct; 9(40):9624-32. PubMed ID: 26029771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of transitions between wetting states on microcavity arrays by optical transmission microscopy.
    Søgaard E; Andersen NK; Smistrup K; Larsen ST; Sun L; Taboryski R
    Langmuir; 2014 Nov; 30(43):12960-8. PubMed ID: 25289462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method.
    Zhang Y; Ren W
    J Chem Phys; 2014 Dec; 141(24):244705. PubMed ID: 25554173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces.
    Murakami D; Jinnai H; Takahara A
    Langmuir; 2014 Mar; 30(8):2061-7. PubMed ID: 24494786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-vapor transition on patterned solid surfaces in a shear flow.
    Yao W; Ren W
    J Chem Phys; 2015 Dec; 143(24):244701. PubMed ID: 26723696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition.
    Giacomello A; Chinappi M; Meloni S; Casciola CM
    Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting transition energy curves for a droplet on a square-post patterned surface.
    Gong W; Zu Y; Chen S; Yan Y
    Sci Bull (Beijing); 2017 Jan; 62(2):136-142. PubMed ID: 36659485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces.
    Krupenkin TN; Taylor JA; Wang EN; Kolodner P; Hodes M; Salamon TR
    Langmuir; 2007 Aug; 23(18):9128-33. PubMed ID: 17663572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls.
    Amabili M; Meloni S; Giacomello A; Casciola CM
    J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.