These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26801030)

  • 1. Scattering study of the Ne + NeH(+)(v0 = 0, j0 = 0) → NeH(+) + Ne reaction on an ab initio based analytical potential energy surface.
    Koner D; Barrios L; González-Lezana T; Panda AN
    J Chem Phys; 2016 Jan; 144(3):034303. PubMed ID: 26801030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum, Statistical, and Quasiclassical Trajectory Studies For the Ne + HeH(+) → NeH(+) + He Reaction on the Ground Electronic State.
    Koner D; Barrios L; González-Lezana T; Panda AN
    J Phys Chem A; 2015 Dec; 119(50):12052-61. PubMed ID: 26172109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time dependent quantum dynamics study of the Ne + H2(+)(v0 = 0-4, j0 = 1) → NeH(+) + H proton transfer reaction, including the Coriolis coupling. A system with oscillatory cross sections.
    Gamallo P; Defazio P; González M
    J Phys Chem A; 2011 Oct; 115(42):11525-30. PubMed ID: 21899272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state.
    Koner D; Barrios L; González-Lezana T; Panda AN
    J Chem Phys; 2014 Sep; 141(11):114302. PubMed ID: 25240353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dynamical study of the He + NeH+ reaction on a new analytical potential energy surface.
    Koner D; Panda AN
    J Phys Chem A; 2013 Dec; 117(49):13070-8. PubMed ID: 24256154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonances in the Ne + H2(+) → NeH(+) + H proton-transfer reaction.
    Gamallo P; Huarte-Larrañaga F; González M
    J Phys Chem A; 2013 Jul; 117(26):5393-400. PubMed ID: 23746307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-classical trajectory study of the Ne + H2(+) → NeH(+) + H reaction based on global potential energy surface.
    Xiao J; Yang CL; Tong XF; Wang MS; Ma XG
    J Phys Chem A; 2011 Mar; 115(9):1486-92. PubMed ID: 21322539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent quantum wave packet study of the Ar+H2+→ArH(+)+H reaction on a new ab initio potential energy surface for the ground electronic state (1(2)A').
    Hu M; Xu W; Liu X; Tan R; Li H
    J Chem Phys; 2013 May; 138(17):174305. PubMed ID: 23656132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Wave Packet Study of the H + Br
    Shang C; Chen J; Xu X; Liu S; Li L; Duo L; Zhang DH
    J Phys Chem A; 2021 Aug; 125(33):7289-7296. PubMed ID: 34383502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New ab initio potential energy surface and quantum dynamics of the reaction H(2S) + NH(X3Σ-) → N(4S) + H2.
    Zhai HS; Han KL
    J Chem Phys; 2011 Sep; 135(10):104314. PubMed ID: 21932900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-resolved differential and integral cross sections for the Ne + H2 (+) (v = 0-2, j = 0) → NeH(+) + H reaction.
    Wu H; Yao CX; He XH; Zhang PY
    J Chem Phys; 2016 May; 144(18):184301. PubMed ID: 27179478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact quantum scattering study of the Ne+H(2) (+) reaction on a new ab initio potential energy surface.
    Lv SJ; Zhang PY; Han KL; He GZ
    J Chem Phys; 2010 Jan; 132(1):014303. PubMed ID: 20078157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio rate constants from hyperspherical quantum scattering: application to H + CH4 --> H2 + CH3.
    Kerkeni B; Clary DC
    J Chem Phys; 2004 Feb; 120(5):2308-18. PubMed ID: 15268369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dynamics of the abstraction reaction of H with cyclopropane.
    Shan X; Clary DC
    J Phys Chem A; 2014 Oct; 118(43):10134-43. PubMed ID: 25271568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact quantum scattering study of the H + HS reaction on a new ab initio potential energy surface H2S (3A").
    Lv SJ; Zhang PY; Han KL; He GZ
    J Chem Phys; 2012 Mar; 136(9):094308. PubMed ID: 22401441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced dimensionality quantum dynamics of CH3 + CH4 --> CH4 + CH3: symmetric hydrogen exchange on an Ab initio potential.
    Remmert SM; Banks ST; Clary DC
    J Phys Chem A; 2009 Apr; 113(16):4255-64. PubMed ID: 19254017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum and quasiclassical dynamical simulations for the Ar
    Koner D
    J Chem Phys; 2021 Feb; 154(5):054303. PubMed ID: 33557552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational inelastic and charge transfer processes in H(+)+H2 system: an ab initio study.
    Amaran S; Kumar S
    J Chem Phys; 2007 Dec; 127(21):214304. PubMed ID: 18067354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analytical potential energy surfaces for HO2(X2A") based on high-level ab initio calculations.
    Xie D; Xu C; Ho TS; Rabitz H; Lendvay G; Lin SY; Guo H
    J Chem Phys; 2007 Feb; 126(7):074315. PubMed ID: 17328613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the effect of vibrational excitation in reaction dynamics: the Ne + H2(+)(v = 0-17, j = 1) → NeH(+) + H, Ne + H(+) + H proton transfer and dissociation cross sections.
    Gamallo P; Martínez R; Sierra JD; González M
    Phys Chem Chem Phys; 2014 Apr; 16(14):6641-8. PubMed ID: 24577045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.