These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 26801035)
21. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules. Tanaka KK; Kawamura K; Tanaka H; Nakazawa K J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736 [TBL] [Abstract][Full Text] [Related]
22. A parameter-free prediction of simulated crystal nucleation times in the Lennard-Jones system: from the steady-state nucleation to the transient time regime. Peng LJ; Morris JR; Aga RS J Chem Phys; 2010 Aug; 133(8):084505. PubMed ID: 20815578 [TBL] [Abstract][Full Text] [Related]
23. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach. Bai XM; Li M J Chem Phys; 2006 Mar; 124(12):124707. PubMed ID: 16599718 [TBL] [Abstract][Full Text] [Related]
24. Dynamical signatures of freezing: stable fluids, metastable fluids, and crystals. Williams SR; McGlynn P; Bryant G; Snook IK; van Megen W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031204. PubMed ID: 17025615 [TBL] [Abstract][Full Text] [Related]
26. Grand canonical steady-state simulation of nucleation. Horsch M; Vrabec J J Chem Phys; 2009 Nov; 131(18):184104. PubMed ID: 19916595 [TBL] [Abstract][Full Text] [Related]
27. Heterogeneous versus homogeneous crystal nucleation of hard spheres. Espinosa JR; Vega C; Valeriani C; Frenkel D; Sanz E Soft Matter; 2019 Dec; 15(47):9625-9631. PubMed ID: 31613303 [TBL] [Abstract][Full Text] [Related]
28. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry. Sharma AK; Escobedo FA J Chem Phys; 2018 May; 148(18):184104. PubMed ID: 29764145 [TBL] [Abstract][Full Text] [Related]
29. Molecular simulation of homogeneous crystal nucleation of AB Bommineni PK; Punnathanam SN J Chem Phys; 2017 Aug; 147(6):064504. PubMed ID: 28810784 [TBL] [Abstract][Full Text] [Related]
30. Pressure control in interfacial systems: Atomistic simulations of vapor nucleation. Marchio S; Meloni S; Giacomello A; Valeriani C; Casciola CM J Chem Phys; 2018 Feb; 148(6):064706. PubMed ID: 29448782 [TBL] [Abstract][Full Text] [Related]
31. Crystal nucleation and the solid-liquid interfacial free energy. Baidakov VG; Tipeev AO J Chem Phys; 2012 Feb; 136(7):074510. PubMed ID: 22360251 [TBL] [Abstract][Full Text] [Related]
32. Lattice mold technique for the calculation of crystal nucleation rates. Espinosa JR; Sampedro P; Valeriani C; Vega C; Sanz E Faraday Discuss; 2016 Dec; 195():569-582. PubMed ID: 27727352 [TBL] [Abstract][Full Text] [Related]
33. Vapor-to-droplet transition in a Lennard-Jones fluid: simulation study of nucleation barriers using the ghost field method. Neimark AV; Vishnyakov A J Phys Chem B; 2005 Mar; 109(12):5962-76. PubMed ID: 16851651 [TBL] [Abstract][Full Text] [Related]
34. Spherical seed mediated vapor condensation of Lennard-Jones fluid: a density functional theory approach. Ghosh S; Ghosh SK J Chem Phys; 2013 Aug; 139(5):054702. PubMed ID: 23927276 [TBL] [Abstract][Full Text] [Related]
38. The effect of hydrodynamics on the crystal nucleation of nearly hard spheres. Fiorucci G; Coli GM; Padding JT; Dijkstra M J Chem Phys; 2020 Feb; 152(6):064903. PubMed ID: 32061217 [TBL] [Abstract][Full Text] [Related]
39. Cavitation and crystallization in a metastable Lennard-Jones liquid at negative pressures and low temperatures. Baidakov VG; Bobrov KS; Teterin AS J Chem Phys; 2011 Aug; 135(5):054512. PubMed ID: 21823717 [TBL] [Abstract][Full Text] [Related]