BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26801039)

  • 1. Insights into the dominant factors of porous gold for CO oxidation.
    Kameoka S; Tanabe T; Miyamoto K; Tsai AP
    J Chem Phys; 2016 Jan; 144(3):034703. PubMed ID: 26801039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.
    Krajčí M; Kameoka S; Tsai AP
    J Chem Phys; 2016 Aug; 145(8):084703. PubMed ID: 27586937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation.
    Xu J; White T; Li P; He C; Yu J; Yuan W; Han YF
    J Am Chem Soc; 2010 Aug; 132(30):10398-406. PubMed ID: 20662517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sinter-Resistant and Highly Active Sub-5 nm Bimetallic Au-Cu Nanoparticle Catalysts Encapsulated in Silica for High-Temperature Carbon Monoxide Oxidation.
    Zanganeh N; Guda VK; Toghiani H; Keith JM
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4776-4785. PubMed ID: 29328617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restructuring-induced activity of SiO(2)-supported large au nanoparticles in low-temperature CO oxidation.
    Qian K; Sun H; Huang W; Fang J; Lv S; He B; Jiang Z; Wei S
    Chemistry; 2008; 14(34):10595-602. PubMed ID: 18925586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Au with thin ZrO2 films: influence of ZrO2 morphology on the adsorption and thermal stability of Au nanoparticles.
    Pan Y; Gao Y; Kong D; Wang G; Hou J; Hu S; Pan H; Zhu J
    Langmuir; 2012 Apr; 28(14):6045-51. PubMed ID: 22424149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CeO2-modified Au@SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol.
    Wang T; Yuan X; Li S; Zeng L; Gong J
    Nanoscale; 2015 May; 7(17):7593-602. PubMed ID: 25670350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship.
    Guo Y; Gu D; Jin Z; Du PP; Si R; Tao J; Xu WQ; Huang YY; Senanayake S; Song QS; Jia CJ; Schüth F
    Nanoscale; 2015 Mar; 7(11):4920-8. PubMed ID: 25631762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation.
    Gu X; Cong X; Ding Y
    Chemphyschem; 2010 Mar; 11(4):841-6. PubMed ID: 20166117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical Structure of the Gold-Iron(III) Oxide Interfacial Perimeter for CO Oxidation.
    Wei X; Shao B; Zhou Y; Li Y; Jin C; Liu J; Shen W
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11289-11293. PubMed ID: 29974580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface reaction network of CO oxidation on CeO
    Ding L; Xiong F; Jin Y; Wang Z; Sun G; Huang W
    Phys Chem Chem Phys; 2016 Nov; 18(47):32551-32559. PubMed ID: 27874112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Gold Electronic State on the Catalytic Performance of Nano Gold Catalysts in
    Pakrieva E; Kolobova E; Kotolevich Y; Pascual L; Carabineiro SAC; Kharlanov AN; Pichugina D; Nikitina N; German D; Partida TAZ; Vazquez HJT; Farías MH; Bogdanchikova N; Cortés Corberán V; Pestryakov A
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32370180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature CO Thermoelectric Gas Sensor based on Au/Co
    Sun L; Luan WL; Wang TC; Su WX; Zhang LX
    Nanotechnology; 2017 Feb; 28(7):075501. PubMed ID: 27977004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Organic Framework-Derived Co
    Liu L; Wei Q; Yu X; Zhang Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34068-34076. PubMed ID: 30220195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional MnO
    Tan X; Wan Y; Huang Y; He C; Zhang Z; He Z; Hu L; Zeng J; Shu D
    J Hazard Mater; 2017 Jan; 321():162-172. PubMed ID: 27619962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and catalytic-hydrogenation behavior of SiO2-embedded nanoscopic Pd, Au, and Pd-Au alloy colloids.
    Pârvulescu VI; Pârvulescu V; Endruschat U; Filoti G; Wagner FE; Kübel C; Richards R
    Chemistry; 2006 Mar; 12(8):2343-57. PubMed ID: 16380952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts.
    Lebarbier VM; Karim AM; Engelhard MH; Wu Y; Xu BQ; Petersen EJ; Datye AK; Wang Y
    ChemSusChem; 2011 Nov; 4(11):1679-84. PubMed ID: 21919212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.