BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 26801318)

  • 1. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG
    J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster.
    Verspagen N; Leiva FP; Janssen IM; Verberk WCEP
    Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CHROMOSOMAL ANALYSIS OF HEAT-SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY.
    Cavicchi S; Guerra D; Torre V; Huey RB
    Evolution; 1995 Aug; 49(4):676-684. PubMed ID: 28565130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aged virgin adults respond to extreme heat events with phenotypic plasticity in an invasive species, Drosophila suzukii.
    Xue Q; Ma CS
    J Insect Physiol; 2020; 121():104016. PubMed ID: 31930976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
    González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation.
    Kristensen TN; Kjeldal H; Schou MF; Nielsen JL
    J Exp Biol; 2016 Apr; 219(Pt 7):969-76. PubMed ID: 26823104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold acclimation triggers major transcriptional changes in Drosophila suzukii.
    Enriquez T; Colinet H
    BMC Genomics; 2019 May; 20(1):413. PubMed ID: 31117947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-temperature stress and the evolution of thermal resistance in Drosophila.
    Loeschcke V; Krebs RA; Dahlgaard J; Michalak P
    EXS; 1997; 83():175-90. PubMed ID: 9342849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855).
    Machekano H; Zidana C; Gotcha N; Nyamukondiwa C
    Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between developmental and adult acclimation have distinct consequences for heat tolerance and heat stress recovery.
    Willot Q; Loos B; Terblanche JS
    J Exp Biol; 2021 Aug; 224(16):. PubMed ID: 34308995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial developmental acclimation in reproductive performance under cold but not heat stress.
    Simões P; Santos MA; Carromeu-Santos A; Quina AS; Santos M; Matos M
    J Therm Biol; 2020 May; 90():102580. PubMed ID: 32479384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation to warmer temperatures can protect host populations from both further heat stress and the potential invasion of pathogens.
    Hector TE; Shocket MS; Sgrò CM; Hall MD
    Glob Chang Biol; 2024 Jun; 30(6):e17341. PubMed ID: 38837568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographic variation in responses of European yellow dung flies to thermal stress.
    Bauerfeind SS; Sørensen JG; Loeschcke V; Berger D; Broder ED; Geiger M; Ferrari M; Blanckenhorn WU
    J Therm Biol; 2018 Apr; 73():41-49. PubMed ID: 29549990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.