These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 26801318)
1. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance? Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318 [TBL] [Abstract][Full Text] [Related]
2. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Gerken AR; Eller OC; Hahn DA; Morgan TJ Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817 [TBL] [Abstract][Full Text] [Related]
3. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance. Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229 [TBL] [Abstract][Full Text] [Related]
4. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance. Jagdale GB; Grewal PS Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652 [TBL] [Abstract][Full Text] [Related]
5. CHROMOSOMAL ANALYSIS OF HEAT-SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY. Cavicchi S; Guerra D; Torre V; Huey RB Evolution; 1995 Aug; 49(4):676-684. PubMed ID: 28565130 [TBL] [Abstract][Full Text] [Related]
6. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster. Verspagen N; Leiva FP; Janssen IM; Verberk WCEP Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515 [TBL] [Abstract][Full Text] [Related]
7. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population. Sørensen JG; Kristensen TN; Loeschcke V; Schou MF J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012 [TBL] [Abstract][Full Text] [Related]
8. Aged virgin adults respond to extreme heat events with phenotypic plasticity in an invasive species, Drosophila suzukii. Xue Q; Ma CS J Insect Physiol; 2020; 121():104016. PubMed ID: 31930976 [TBL] [Abstract][Full Text] [Related]
9. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015 [TBL] [Abstract][Full Text] [Related]
10. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation. Kristensen TN; Kjeldal H; Schou MF; Nielsen JL J Exp Biol; 2016 Apr; 219(Pt 7):969-76. PubMed ID: 26823104 [TBL] [Abstract][Full Text] [Related]
11. High-temperature stress and the evolution of thermal resistance in Drosophila. Loeschcke V; Krebs RA; Dahlgaard J; Michalak P EXS; 1997; 83():175-90. PubMed ID: 9342849 [TBL] [Abstract][Full Text] [Related]
13. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Machekano H; Zidana C; Gotcha N; Nyamukondiwa C Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933 [TBL] [Abstract][Full Text] [Related]
14. Interactions between developmental and adult acclimation have distinct consequences for heat tolerance and heat stress recovery. Willot Q; Loos B; Terblanche JS J Exp Biol; 2021 Aug; 224(16):. PubMed ID: 34308995 [TBL] [Abstract][Full Text] [Related]
15. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands. Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738 [TBL] [Abstract][Full Text] [Related]
16. Beneficial developmental acclimation in reproductive performance under cold but not heat stress. Simões P; Santos MA; Carromeu-Santos A; Quina AS; Santos M; Matos M J Therm Biol; 2020 May; 90():102580. PubMed ID: 32479384 [TBL] [Abstract][Full Text] [Related]
17. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change. Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918 [TBL] [Abstract][Full Text] [Related]
18. Acclimation to warmer temperatures can protect host populations from both further heat stress and the potential invasion of pathogens. Hector TE; Shocket MS; Sgrò CM; Hall MD Glob Chang Biol; 2024 Jun; 30(6):e17341. PubMed ID: 38837568 [TBL] [Abstract][Full Text] [Related]
19. Cold acclimation triggers major transcriptional changes in Drosophila suzukii. Enriquez T; Colinet H BMC Genomics; 2019 May; 20(1):413. PubMed ID: 31117947 [TBL] [Abstract][Full Text] [Related]
20. Geographic variation in responses of European yellow dung flies to thermal stress. Bauerfeind SS; Sørensen JG; Loeschcke V; Berger D; Broder ED; Geiger M; Ferrari M; Blanckenhorn WU J Therm Biol; 2018 Apr; 73():41-49. PubMed ID: 29549990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]