BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26801562)

  • 1. Fork restart protein, PriA, binds around oriC after depletion of nucleotide precursors: Replication fork arrest near the replication origin.
    Tanaka T; Nishito Y; Masai H
    Biochem Biophys Res Commun; 2016 Feb; 470(3):546-551. PubMed ID: 26801562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication forks in
    Bianco PR
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32357475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication fork binding triggers structural changes in the PriA helicase that govern DNA replication restart in E. coli.
    Duckworth AT; Ducos PL; McMillan SD; Satyshur KA; Blumenthal KH; Deorio HR; Larson JA; Sandler SJ; Grant T; Keck JL
    Nat Commun; 2023 May; 14(1):2725. PubMed ID: 37169801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stalled replication fork repair and misrepair during thymineless death in Escherichia coli.
    Kuong KJ; Kuzminov A
    Genes Cells; 2010 Jun; 15(6):619-34. PubMed ID: 20465561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSB Facilitates Fork-Substrate Discrimination by the PriA DNA Helicase.
    Tan HY; Bianco PR
    ACS Omega; 2021 Jun; 6(25):16324-16335. PubMed ID: 34235303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2.
    Nieminuszczy J; Broderick R; Bellani MA; Smethurst E; Schwab RA; Cherdyntseva V; Evmorfopoulou T; Lin YL; Minczuk M; Pasero P; Gagos S; Seidman MM; Niedzwiedz W
    Mol Cell; 2019 Aug; 75(3):605-619.e6. PubMed ID: 31255466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EXO5-DNA structure and BLM interactions direct DNA resection critical for ATR-dependent replication restart.
    Hambarde S; Tsai CL; Pandita RK; Bacolla A; Maitra A; Charaka V; Hunt CR; Kumar R; Limbo O; Le Meur R; Chazin WJ; Tsutakawa SE; Russell P; Schlacher K; Pandita TK; Tainer JA
    Mol Cell; 2021 Jul; 81(14):2989-3006.e9. PubMed ID: 34197737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication fork inhibition in seqA mutants of Escherichia coli triggers replication fork breakage.
    Rotman E; Khan SR; Kouzminova E; Kuzminov A
    Mol Microbiol; 2014 Jul; 93(1):50-64. PubMed ID: 24806348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pif1-Family Helicases Support Fork Convergence during DNA Replication Termination in Eukaryotes.
    Deegan TD; Baxter J; Ortiz Bazán MÁ; Yeeles JTP; Labib KPM
    Mol Cell; 2019 Apr; 74(2):231-244.e9. PubMed ID: 30850330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The progression of replication forks at natural replication barriers in live bacteria.
    Moolman MC; Tiruvadi Krishnan S; Kerssemakers JW; de Leeuw R; Lorent V; Sherratt DJ; Dekker NH
    Nucleic Acids Res; 2016 Jul; 44(13):6262-73. PubMed ID: 27166373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication.
    Bétous R; Mason AC; Rambo RP; Bansbach CE; Badu-Nkansah A; Sirbu BM; Eichman BF; Cortez D
    Genes Dev; 2012 Jan; 26(2):151-62. PubMed ID: 22279047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule insight into stalled replication fork rescue in Escherichia coli.
    Bianco PR; Lu Y
    Nucleic Acids Res; 2021 May; 49(8):4220-4238. PubMed ID: 33744948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of bacterial DNA replication restart.
    Windgassen TA; Wessel SR; Bhattacharyya B; Keck JL
    Nucleic Acids Res; 2018 Jan; 46(2):504-519. PubMed ID: 29202195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability.
    Whalen JM; Freudenreich CH
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32526925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory Evolution Experiments Help Identify a Predominant Region of Constitutive Stable DNA Replication Initiation.
    Veetil RT; Malhotra N; Dubey A; Seshasayee ASN
    mSphere; 2020 Feb; 5(1):. PubMed ID: 32102945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of dormant origins to genome stability: from cell biology to human genetics.
    Alver RC; Chadha GS; Blow JJ
    DNA Repair (Amst); 2014 Jul; 19(100):182-9. PubMed ID: 24767947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene duplication and deletion caused by over-replication at a fork barrier.
    Oehler J; Morrow CA; Whitby MC
    Nat Commun; 2023 Nov; 14(1):7730. PubMed ID: 38007544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide identification of replication fork stalling/pausing sites and the interplay between RNA Pol II transcription and DNA replication progression.
    Rojas P; Wang J; Guglielmi G; Sadurnì MM; Pavlou L; Leung GHD; Rajagopal V; Spill F; Saponaro M
    Genome Biol; 2024 May; 25(1):126. PubMed ID: 38773641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication fork uncoupling causes nascent strand degradation and fork reversal.
    Kavlashvili T; Liu W; Mohamed TM; Cortez D; Dewar JM
    Nat Struct Mol Biol; 2023 Jan; 30(1):115-124. PubMed ID: 36593312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of stalled replication forks in Bacillus subtilis.
    Carrasco B; Torres R; Moreno-Del Álamo M; Ramos C; Ayora S; Alonso JC
    FEMS Microbiol Rev; 2024 Jan; 48(1):. PubMed ID: 38052445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.