These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 26801567)
41. Guanabenz, an alpha2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells. Norez C; Vandebrouck C; Antigny F; Dannhoffer L; Blondel M; Becq F Eur J Pharmacol; 2008 Sep; 592(1-3):33-40. PubMed ID: 18640110 [TBL] [Abstract][Full Text] [Related]
42. CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol. Yang S; Yu BO; Sui Y; Zhang Y; Wang X; Hou S; Ma T; Yang H Pharmazie; 2013 Sep; 68(9):772-6. PubMed ID: 24147347 [TBL] [Abstract][Full Text] [Related]
43. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. Briel M; Greger R; Kunzelmann K J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736 [TBL] [Abstract][Full Text] [Related]
44. Chloride secretion by porcine ciliary epithelium: New insight into species similarities and differences in aqueous humor formation. Kong CW; Li KK; To CH Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5428-36. PubMed ID: 17122133 [TBL] [Abstract][Full Text] [Related]
45. Na+ and Cl- conductances in airway epithelial cells: increased Na+ conductance in cystic fibrosis. Kunzelmann K; Kathöfer S; Greger R Pflugers Arch; 1995 Nov; 431(1):1-9. PubMed ID: 8584404 [TBL] [Abstract][Full Text] [Related]
46. Minor role of Cl- secretion in non-cystic fibrosis and cystic fibrosis human nasal epithelium. Rückes-Nilges C; Weber U; Lindemann H; Münker G; Clauss W; Weber WM Cell Physiol Biochem; 1999; 9(1):1-10. PubMed ID: 10352340 [TBL] [Abstract][Full Text] [Related]
47. GTP-binding proteins inhibit cAMP activation of chloride channels in cystic fibrosis airway epithelial cells. Schwiebert EM; Kizer N; Gruenert DC; Stanton BA Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10623-7. PubMed ID: 1279687 [TBL] [Abstract][Full Text] [Related]
48. Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics. Kunzelmann K; Mall M Am J Respir Med; 2003; 2(4):299-309. PubMed ID: 14719996 [TBL] [Abstract][Full Text] [Related]
49. Evidence for basolateral Cl- channels as modulators of apical Cl- secretion in pulmonary epithelia of Xenopus laevis. Berger J; Richter K; Clauss WG; Fronius M Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R616-23. PubMed ID: 21123756 [TBL] [Abstract][Full Text] [Related]
50. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research. Hahn A; Salomon JJ; Leitz D; Feigenbutz D; Korsch L; Lisewski I; Schrimpf K; Millar-Büchner P; Mall MA; Frings S; Möhrlen F Pflugers Arch; 2018 Sep; 470(9):1335-1348. PubMed ID: 29860639 [TBL] [Abstract][Full Text] [Related]
51. Characterization of primary rat nasal epithelial cultures in CFTR knockout rats as a model for CF sinus disease. Tipirneni KE; Cho DY; Skinner DF; Zhang S; Mackey C; Lim DJ; Woodworth BA Laryngoscope; 2017 Nov; 127(11):E384-E391. PubMed ID: 28771736 [TBL] [Abstract][Full Text] [Related]
52. Physiological and Pathophysiological Relevance of the Anion Transporter Slc26a9 in Multiple Organs. Liu X; Li T; Tuo B Front Physiol; 2018; 9():1197. PubMed ID: 30233393 [TBL] [Abstract][Full Text] [Related]
53. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR. MacVinish LJ; Cope G; Ropenga A; Cuthbert AW Br J Pharmacol; 2007 Apr; 150(8):1055-65. PubMed ID: 17339840 [TBL] [Abstract][Full Text] [Related]
54. Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents. Cuppoletti J; Chakrabarti J; Tewari KP; Malinowska DH Am J Physiol Cell Physiol; 2014 Sep; 307(5):C479-92. PubMed ID: 25009109 [TBL] [Abstract][Full Text] [Related]
55. cAMP regulation of Cl(-) and HCO(-)(3) secretion across rat fetal distal lung epithelial cells. Lazrak A; Thome U; Myles C; Ware J; Chen L; Venglarik CJ; Matalon S Am J Physiol Lung Cell Mol Physiol; 2002 Apr; 282(4):L650-8. PubMed ID: 11880289 [TBL] [Abstract][Full Text] [Related]
56. Lack of correlation between CFTR expression, CFTR Cl- currents, amiloride-sensitive Na+ conductance, and cystic fibrosis phenotype. Beck S; Kühr J; Schütz VV; Seydewitz HH; Brandis M; Greger R; Kunzelmann K Pediatr Pulmonol; 1999 Apr; 27(4):251-9. PubMed ID: 10230924 [TBL] [Abstract][Full Text] [Related]
57. Chloride channels in the small intestinal cell line IEC-18. Basavappa S; Vulapalli SR; Zhang H; Yule D; Coon S; Sundaram U J Cell Physiol; 2005 Jan; 202(1):21-31. PubMed ID: 15389550 [TBL] [Abstract][Full Text] [Related]
58. CFTR-mediated inhibition of epithelial Na+ conductance in human colon is defective in cystic fibrosis. Mall M; Bleich M; Kuehr J; Brandis M; Greger R; Kunzelmann K Am J Physiol; 1999 Sep; 277(3):G709-16. PubMed ID: 10484398 [TBL] [Abstract][Full Text] [Related]
59. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells. Varelogianni G; Hussain R; Strid H; Oliynyk I; Roomans GM; Johannesson M Cell Biol Int; 2013 Nov; 37(11):1149-56. PubMed ID: 23765701 [TBL] [Abstract][Full Text] [Related]
60. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport. Li H; Salomon JJ; Sheppard DN; Mall MA; Galietta LJ Curr Opin Pharmacol; 2017 Jun; 34():91-97. PubMed ID: 29065356 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]