BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26801575)

  • 1. P212A Mutant of Dihydrodaidzein Reductase Enhances (S)-Equol Production and Enantioselectivity in a Recombinant Escherichia coli Whole-Cell Reaction System.
    Lee PG; Kim J; Kim EJ; Jung E; Pandey BP; Kim BG
    Appl Environ Microbiol; 2016 Jan; 82(7):1992-2002. PubMed ID: 26801575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens.
    Schröder C; Matthies A; Engst W; Blaut M; Braune A
    Appl Environ Microbiol; 2013 Jun; 79(11):3494-502. PubMed ID: 23542626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of (-)-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion.
    Lee PG; Kim J; Kim EJ; Lee SH; Choi KY; Kazlauskas RJ; Kim BG
    ACS Chem Biol; 2017 Nov; 12(11):2883-2890. PubMed ID: 28985044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of two novel reductases involved in equol biosynthesis in Lactococcus strain 20-92.
    Shimada Y; Takahashi M; Miyazawa N; Ohtani T; Abiru Y; Uchiyama S; Hishigaki H
    J Mol Microbiol Biotechnol; 2011; 21(3-4):160-72. PubMed ID: 22286043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones.
    Kawada Y; Goshima T; Sawamura R; Yokoyama SI; Yanase E; Niwa T; Ebihara A; Inagaki M; Yamaguchi K; Kuwata K; Kato Y; Sakurada O; Suzuki T
    J Biosci Bioeng; 2018 Sep; 126(3):301-309. PubMed ID: 29699942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression of equol biosynthesis genes from Adlercreutzia equolifaciens.
    Vázquez L; Flórez AB; Rodríguez J; Mayo B
    FEMS Microbiol Lett; 2021 Jul; 368(13):. PubMed ID: 34173644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel dihydrodaidzein racemase essential for biosynthesis of equol from daidzein in Lactococcus sp. strain 20-92.
    Shimada Y; Takahashi M; Miyazawa N; Abiru Y; Uchiyama S; Hishigaki H
    Appl Environ Microbiol; 2012 Jul; 78(14):4902-7. PubMed ID: 22582059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of soy isoflavones by use of Escherichia coli whole-cell biocatalyst expressing isoflavone reductase under aerobic conditions.
    Gao YN; Hao QH; Zhang HL; Zhou B; Yu XM; Wang XL
    Lett Appl Microbiol; 2016 Aug; 63(2):111-6. PubMed ID: 27227796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of inter-individual differences in gut bacterial isoflavone bioactivation in humans by PCR-based targeting of genes involved in equol formation.
    Braune A; Blaut M
    J Appl Microbiol; 2018 Jan; 124(1):220-231. PubMed ID: 29055162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS.
    Tsuji H; Moriyama K; Nomoto K; Akaza H
    Appl Environ Microbiol; 2012 Feb; 78(4):1228-36. PubMed ID: 22179235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.
    Wang XL; Hur HG; Lee JH; Kim KT; Kim SI
    Appl Environ Microbiol; 2005 Jan; 71(1):214-9. PubMed ID: 15640190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in
    Flórez AB; Vázquez L; Rodríguez J; Redruello B; Mayo B
    Nutrients; 2019 Apr; 11(5):. PubMed ID: 31052328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92.
    Shimada Y; Yasuda S; Takahashi M; Hayashi T; Miyazawa N; Sato I; Abiru Y; Uchiyama S; Hishigaki H
    Appl Environ Microbiol; 2010 Sep; 76(17):5892-901. PubMed ID: 20639368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To Construct an Engineered (
    Li H; Mao S; Chen H; Zhu L; Liu W; Wang X; Yin Y
    Front Microbiol; 2018; 9():1182. PubMed ID: 29915570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric solvent engineering for gram/liter scale production of a water-insoluble isoflavone derivative, (S)-equol.
    Lee PG; Lee SH; Kim J; Kim EJ; Choi KY; Kim BG
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6915-6921. PubMed ID: 29948112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring functional genes' correlation with (
    Hu Y-F; Luo S; Wang S-Q; Chen K-X; Zhong W-X; Li B-Y; Cao L-Y; Chen H-H; Yin Y-S
    Appl Environ Microbiol; 2024 Apr; 90(4):e0000724. PubMed ID: 38501861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of (3S,4R)-tetrahydrodaidzein to (3S)-equol by THD reductase: proposed mechanism involving a radical intermediate.
    Kim M; Marsh EN; Kim SU; Han J
    Biochemistry; 2010 Jul; 49(26):5582-7. PubMed ID: 20515029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous production of equol by lactic acid bacteria strains in culture medium and food.
    Ruiz de la Bastida A; Peirotén Á; Langa S; Arqués JL; Landete JM
    Int J Food Microbiol; 2021 Dec; 360():109328. PubMed ID: 34281716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactobacillus intestinalis efficiently produces equol from daidzein and chungkookjang, short-term fermented soybeans.
    Heng Y; Kim MJ; Yang HJ; Kang S; Park S
    Arch Microbiol; 2019 Oct; 201(8):1009-1017. PubMed ID: 31069407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria.
    Wang XL; Kim HJ; Kang SI; Kim SI; Hur HG
    Arch Microbiol; 2007 Feb; 187(2):155-60. PubMed ID: 17109177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.