These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 26801613)

  • 1. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases.
    Crouch LI; Labourel A; Walton PH; Davies GJ; Gilbert HJ
    J Biol Chem; 2016 Apr; 291(14):7439-49. PubMed ID: 26801613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.
    Forsberg Z; Nelson CE; Dalhus B; Mekasha S; Loose JS; Crouch LI; Røhr ÅK; Gardner JG; Eijsink VG; Vaaje-Kolstad G
    J Biol Chem; 2016 Apr; 291(14):7300-12. PubMed ID: 26858252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases.
    Branch J; Rajagopal BS; Paradisi A; Yates N; Lindley PJ; Smith J; Hollingsworth K; Turnbull WB; Henrissat B; Parkin A; Berry A; Hemsworth GR
    Biochem J; 2021 Jul; 478(14):2927-2944. PubMed ID: 34240737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
    Srivastava A; Nagar P; Rathore S; Adlakha N
    Microbiol Spectr; 2022 Feb; 10(1):e0269721. PubMed ID: 35080440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional variation of chitin-binding domains of a lytic polysaccharide monooxygenase from Cellvibrio japonicus.
    Madland E; Forsberg Z; Wang Y; Lindorff-Larsen K; Niebisch A; Modregger J; Eijsink VGH; Aachmann FL; Courtade G
    J Biol Chem; 2021 Oct; 297(4):101084. PubMed ID: 34411561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs).
    Forsberg Z; Courtade G
    Essays Biochem; 2023 Apr; 67(3):561-574. PubMed ID: 36504118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase.
    Attia MA; Brumer H
    Appl Environ Microbiol; 2021 Feb; 87(5):e0263420. PubMed ID: 33355108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbohydrate-binding modules influence substrate specificity of an endoglucanase from Clostridium thermocellum.
    Ichikawa S; Yoshida M; Karita S; Kondo M; Goto M
    Biosci Biotechnol Biochem; 2016; 80(1):188-92. PubMed ID: 26223555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.
    Courtade G; Forsberg Z; Heggset EB; Eijsink VGH; Aachmann FL
    J Biol Chem; 2018 Aug; 293(34):13006-13015. PubMed ID: 29967065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate-binding modules enhance H
    Gao W; Li T; Zhou H; Ju J; Yin H
    J Biol Chem; 2024 Jan; 300(1):105573. PubMed ID: 38122901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitin-Active Lytic Polysaccharide Monooxygenases.
    Courtade G; Aachmann FL
    Adv Exp Med Biol; 2019; 1142():115-129. PubMed ID: 31102244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of the carbohydrate-binding module on how a lytic polysaccharide monooxygenase modifies cellulose fibers.
    Støpamo FG; Sulaeva I; Budischowsky D; Rahikainen J; Marjamaa K; Kruus K; Potthast A; Eijsink VGH; Várnai A
    Biotechnol Biofuels Bioprod; 2024 Aug; 17(1):118. PubMed ID: 39182111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of the Carbohydrate-Binding Module on a Fungal Starch-Active Lytic Polysaccharide Monooxygenase.
    Zhang N; Yang J; Li Z; Haider J; Zhou Y; Ji Y; Schwaneberg U; Zhu L
    J Agric Food Chem; 2023 Nov; 71(47):18405-18413. PubMed ID: 37962542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of a novel lytic polysaccharide monooxygenase from Streptomyces griseus on cellulose and chitin.
    Sato K; Chiba D; Yoshida S; Takahashi M; Totani K; Shida Y; Ogasawara W; Nakagawa YS
    Int J Biol Macromol; 2020 Dec; 164():2085-2091. PubMed ID: 32763398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in
    Li J; Goddard-Borger ED; Raji O; Saxena H; Solhi L; Mathieu Y; Master ER; Wakarchuk WW; Brumer H
    Appl Environ Microbiol; 2022 Aug; 88(15):e0096822. PubMed ID: 35862679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere.
    Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C
    FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates.
    Chalak A; Villares A; Moreau C; Haon M; Grisel S; d'Orlando A; Herpoël-Gimbert I; Labourel A; Cathala B; Berrin JG
    Biotechnol Biofuels; 2019; 12():206. PubMed ID: 31508147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.